Ellis Charles A, Miller Robyn L, Calhoun Vince D
Tri-institutional Center for Translational Research in Neuroimaging and Data Science at Georgia State University, Emory University, and Georgia Institute of Technology.
bioRxiv. 2023 Nov 16:2023.11.13.566915. doi: 10.1101/2023.11.13.566915.
Transfer learning offers a route for developing robust deep learning models on small raw electroencephalography (EEG) datasets. Nevertheless, the utility of applying representations learned from large datasets with a lower sampling rate to smaller datasets with higher sampling rates remains relatively unexplored. In this study, we transfer representations learned by a convolutional neural network on a large, publicly available sleep dataset with a 100 Hertz sampling rate to a major depressive disorder (MDD) diagnosis task at a sampling rate of 200 Hertz. Importantly, we find that the early convolutional layers contain representations that are generalizable across tasks. Moreover, our approach significantly increases mean model accuracy from 82.33% to 86.99%, increases the model's use of lower frequencies, (θ-band), and increases its robustness to channel loss. We expect this analysis to provide useful guidance and enable more widespread use of transfer learning in EEG deep learning studies.
迁移学习为在小型原始脑电图(EEG)数据集上开发强大的深度学习模型提供了一条途径。然而,将从较低采样率的大型数据集中学习到的表示应用于较高采样率的较小数据集的效用仍相对未被探索。在本研究中,我们将卷积神经网络在一个采样率为100赫兹的大型公开可用睡眠数据集上学习到的表示迁移到一个采样率为200赫兹的重度抑郁症(MDD)诊断任务中。重要的是,我们发现早期卷积层包含可跨任务推广的表示。此外,我们的方法显著提高了平均模型准确率,从82.33%提高到86.99%,增加了模型对低频(θ波段)的使用,并提高了其对通道丢失的鲁棒性。我们期望这一分析能提供有用的指导,并使迁移学习在EEG深度学习研究中得到更广泛的应用。