Suppr超能文献

认知诊断模型(CDMs)和(单维)项目反应理论((M)IRT)在测量潜在技能增长方面的相对稳健性。

Relative Robustness of CDMs and (M)IRT in Measuring Growth in Latent Skills.

作者信息

Huang Qi Helen, Bolt Daniel M

机构信息

University of Wisconsin-Madison, USA.

出版信息

Educ Psychol Meas. 2023 Aug;83(4):808-830. doi: 10.1177/00131644221117194. Epub 2022 Aug 18.

Abstract

Previous studies have demonstrated evidence of latent skill continuity even in tests intentionally designed for measurement of binary skills. In addition, the assumption of binary skills when continuity is present has been shown to potentially create a lack of invariance in item and latent ability parameters that may undermine applications. In this article, we examine measurement of growth as one such application, and consider multidimensional item response theory (MIRT) as a competing alternative. Motivated by prior findings concerning the effects of skill continuity, we study the relative robustness of cognitive diagnostic models (CDMs) and (M)IRT models in the measurement of growth under both binary and continuous latent skill distributions. We find CDMs to be a less robust way of quantifying growth under misspecification, and subsequently provide a real-data example suggesting underestimation of growth as a likely consequence. It is suggested that researchers should regularly attend to the assumptions associated with the use of latent binary skills and consider (M)IRT as a potentially more robust alternative if unsure of their discrete nature.

摘要

以往的研究已经证明,即使在故意设计用于测量二元技能的测试中,也存在潜在技能连续性的证据。此外,当存在连续性时,二元技能的假设已被证明可能会导致项目和潜在能力参数缺乏不变性,这可能会破坏应用。在本文中,我们将检验作为此类应用之一的增长测量,并将多维项目反应理论(MIRT)视为一种竞争性替代方法。受先前关于技能连续性影响的研究结果的启发,我们研究了认知诊断模型(CDMs)和(M)IRT模型在二元和连续潜在技能分布下测量增长时的相对稳健性。我们发现,在错误设定的情况下,CDMs是一种量化增长的稳健性较差的方法,随后提供了一个实际数据示例,表明增长被低估可能是一个后果。建议研究人员应经常关注与使用潜在二元技能相关的假设,如果不确定其离散性质,可将(M)IRT视为一种可能更稳健的替代方法。

相似文献

1
Relative Robustness of CDMs and (M)IRT in Measuring Growth in Latent Skills.
Educ Psychol Meas. 2023 Aug;83(4):808-830. doi: 10.1177/00131644221117194. Epub 2022 Aug 18.
2
Robustness of Projective IRT to Misspecification of the Underlying Multidimensional Model.
Appl Psychol Meas. 2020 Jul;44(5):362-375. doi: 10.1177/0146621620909894. Epub 2020 Mar 10.
3
The Potential for Interpretational Confounding in Cognitive Diagnosis Models.
Appl Psychol Meas. 2022 Jun;46(4):303-320. doi: 10.1177/01466216221084207. Epub 2022 Apr 15.
4
Dynamical Non-compensatory Multidimensional IRT Model Using Variational Approximation.
Psychometrika. 2023 Jun;88(2):487-526. doi: 10.1007/s11336-023-09903-y. Epub 2023 Mar 6.
5
Efficient Models for Cognitive Diagnosis With Continuous and Mixed-Type Latent Variables.
Appl Psychol Meas. 2015 Jan;39(1):31-43. doi: 10.1177/0146621614524981. Epub 2014 Apr 14.
6
Parameter Recovery in Multidimensional Item Response Theory Models Under Complexity and Nonnormality.
Appl Psychol Meas. 2017 Oct;41(7):530-544. doi: 10.1177/0146621617707507. Epub 2017 May 11.
7
Mixture IRT Model With a Higher-Order Structure for Latent Traits.
Educ Psychol Meas. 2017 Apr;77(2):275-304. doi: 10.1177/0013164416640327. Epub 2016 Apr 1.
8
New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data.
Psychometrika. 2024 Dec;89(4):1304-1336. doi: 10.1007/s11336-024-09983-4. Epub 2024 Jul 5.
9
Robustness of Parameter Estimation to Assumptions of Normality in the Multidimensional Graded Response Model.
Multivariate Behav Res. 2018 May-Jun;53(3):403-418. doi: 10.1080/00273171.2018.1455572. Epub 2018 Apr 6.
10
Investigating the Impact of Item Parameter Drift for Item Response Theory Models with Mixture Distributions.
Front Psychol. 2016 Feb 24;7:255. doi: 10.3389/fpsyg.2016.00255. eCollection 2016.

引用本文的文献

1
The Potential for Interpretational Confounding in Cognitive Diagnosis Models.
Appl Psychol Meas. 2022 Jun;46(4):303-320. doi: 10.1177/01466216221084207. Epub 2022 Apr 15.

本文引用的文献

1
The Potential for Interpretational Confounding in Cognitive Diagnosis Models.
Appl Psychol Meas. 2022 Jun;46(4):303-320. doi: 10.1177/01466216221084207. Epub 2022 Apr 15.
2
A multilevel logistic hidden Markov model for learning under cognitive diagnosis.
Behav Res Methods. 2020 Feb;52(1):408-421. doi: 10.3758/s13428-019-01238-w.
3
Assessing Growth in a Diagnostic Classification Model Framework.
Psychometrika. 2018 Dec;83(4):963-990. doi: 10.1007/s11336-018-9638-5. Epub 2018 Sep 27.
4
A Hidden Markov Model for Learning Trajectories in Cognitive Diagnosis With Application to Spatial Rotation Skills.
Appl Psychol Meas. 2018 Jan;42(1):5-23. doi: 10.1177/0146621617721250. Epub 2017 Sep 5.
5
Assessing Change in Latent Skills Across Time With Longitudinal Cognitive Diagnosis Modeling: An Evaluation of Model Performance.
Educ Psychol Meas. 2017 Jun;77(3):369-388. doi: 10.1177/0013164416659314. Epub 2016 Jul 20.
6
A Latent Transition Analysis Model for Assessing Change in Cognitive Skills.
Educ Psychol Meas. 2016 Apr;76(2):181-204. doi: 10.1177/0013164415588946. Epub 2015 Jun 15.
7
The Effects of Q-Matrix Design on Classification Accuracy in the Log-Linear Cognitive Diagnosis Model.
Educ Psychol Meas. 2015 Jun;75(3):491-511. doi: 10.1177/0013164414539162. Epub 2014 Jun 22.
8
Limited-information goodness-of-fit testing of diagnostic classification item response models.
Br J Math Stat Psychol. 2016 Nov;69(3):225-252. doi: 10.1111/bmsp.12074.
9
The use and misuse of psychometric models.
Psychometrika. 2014 Apr;79(2):347-54. doi: 10.1007/s11336-013-9364-y. Epub 2014 Jan 30.
10
Hierarchical diagnostic classification models morphing into unidimensional 'diagnostic' classification models-a commentary.
Psychometrika. 2014 Apr;79(2):340-6. doi: 10.1007/s11336-013-9363-z. Epub 2014 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验