Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
J Mater Chem B. 2023 Sep 6;11(32):7629-7640. doi: 10.1039/d3tb00710c.
Hydrogels with adaptable optical and mechanical characteristics show considerable promise for light delivery with neuroengineering applications. However, the unlinked amorphous polymer chains within hydrogels can cause volumetric swelling after water absorption under physiological conditions over time. Chemically cross-linked poly(vinyl alcohol) (PVA) hydrogels showcase fatigue-resistant attributes and promising biocompatibility for the manufacture of soft neural probes. However, possible swelling of the PVA hydrogel matrix could impact the structural stability of hydrogel-based bioelectronics and their long-term functionality. In this study, we utilized an atomic layer deposition (ALD) technique to generate an inorganic, silicon dioxide (SiO) coating layer on chemically cross-linked PVA hydrogel fibers. To evaluate the stability of SiO-coated PVA hydrogel fibers mimicking the environment, we conducted accelerated stability tests. SiO-coated PVA hydrogel fibers showed improved stability over a one-week incubation period under a harsh environment, preventing swelling and preserving their mechanical and optical properties compared to uncoated fibers. These SiO-coated PVA hydrogel fibers demonstrated nanoscale polymeric crystalline domains (6.5 ± 0.1 nm), an elastic modulus of 73.7 ± 31.7 MPa, a maximum elongation of 113.6 ± 24.2%, and minimal light transmission loss (1.9 ± 0.2 dB cm). Lastly, we applied these SiO-coated PVA hydrogel fibers to optically activate the motor cortex of transgenic Thy1::ChR2 mice during locomotor behavioral tests. This mouse cohort was genetically modified to express the light-sensitive ion channel, channelrhodopsin-2 (ChR2), and implanted with hydrogel fibers to deliver light to the motor cortex area (M2). Light stimulation hydrogel fibers resulted in optogenetically modulated mouse locomotor behaviors, including increased contralateral rotation, mobility speeds, and travel distances.
具有可调节光学和机械特性的水凝胶在神经工程应用中具有很大的光传输潜力。然而,水凝胶中未键合的无定形聚合物链会在生理条件下随着时间的推移吸收水分而导致体积膨胀。化学交联的聚乙烯醇(PVA)水凝胶具有抗疲劳特性和良好的生物相容性,可用于制造柔软的神经探针。然而,PVA 水凝胶基质的可能膨胀会影响基于水凝胶的生物电子器件的结构稳定性及其长期功能。在这项研究中,我们利用原子层沉积(ALD)技术在化学交联的 PVA 水凝胶纤维上生成无机的二氧化硅(SiO)涂层。为了评估模拟环境中 SiO 涂层 PVA 水凝胶纤维的稳定性,我们进行了加速稳定性测试。与未涂层的纤维相比,SiO 涂层 PVA 水凝胶纤维在恶劣环境下一周的孵育期内表现出更好的稳定性,防止了膨胀并保持了其机械和光学性能。这些 SiO 涂层 PVA 水凝胶纤维表现出纳米级聚合物结晶域(6.5 ± 0.1nm)、弹性模量为 73.7 ± 31.7MPa、最大伸长率为 113.6 ± 24.2%和最小的光传输损耗(1.9 ± 0.2dBcm)。最后,我们在运动行为测试中应用这些 SiO 涂层 PVA 水凝胶纤维来光学激活转基因 Thy1::ChR2 小鼠的运动皮层。该小鼠品系经过基因改造,表达了光敏感离子通道,通道视紫红质-2(ChR2),并植入水凝胶纤维以将光传递到运动皮层区域(M2)。光刺激水凝胶纤维导致光遗传调制的小鼠运动行为,包括增加对侧旋转、运动速度和运动距离。