Ghelich Pejman, Nolta Nicholas F, Han Martin
Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
Npj Mater Degrad. 2021;5. doi: 10.1038/s41529-021-00154-9. Epub 2021 Feb 10.
Silicon-based implantable neural devices have great translational potential as a means to deliver various treatments for neurological disorders. However, they are currently held back by uncertain longevity following chronic exposure to body fluids. Conventional deposition techniques cover only the horizontal surfaces which contain active electronics, electrode sites, and conducting traces. As a result, a vast majority of today's silicon devices leave their vertical sidewalls exposed without protection. In this work, we investigated two batch-process silicon dioxide deposition methods separately and in combination: atomic layer deposition and inductively-coupled plasma chemical vapor deposition. We then utilized a rapid soak test involving potassium hydroxide to evaluate the coverage quality of each protection strategy. Focused ion beam cross sectioning, scanning electron microscopy, and 3D extrapolation enabled us to characterize and quantify the effectiveness of the deposition methods. Results showed that bare silicon sidewalls suffered the most dissolution whereas ALD silicon dioxide provided the best protection, demonstrating its effectiveness as a promising batch process technique to mitigate silicon sidewall corrosion in chronic applications.
基于硅的可植入神经装置作为一种为神经系统疾病提供各种治疗的手段具有巨大的转化潜力。然而,目前它们因长期暴露于体液后的寿命不确定而受到阻碍。传统的沉积技术仅覆盖包含有源电子器件、电极部位和导电迹线的水平表面。因此,当今绝大多数硅器件的垂直侧壁没有得到保护而暴露在外。在这项工作中,我们分别并结合研究了两种批量处理的二氧化硅沉积方法:原子层沉积和电感耦合等离子体化学气相沉积。然后,我们利用涉及氢氧化钾的快速浸泡试验来评估每种保护策略的覆盖质量。聚焦离子束截面分析、扫描电子显微镜和三维外推使我们能够表征和量化沉积方法的有效性。结果表明,裸露的硅侧壁溶解最为严重,而原子层沉积的二氧化硅提供了最佳保护,证明了其作为一种有前景的批量处理技术在长期应用中减轻硅侧壁腐蚀的有效性。