Suppr超能文献

联合性牙髓牙周病中的微生物群及其引发心内膜炎的风险。

Microbiota present in combined endodontic-periodontal diseases and its risks for endocarditis.

机构信息

Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas-UNICAMP, Av. Limeira 901, Bairro Areao, Piracicaba, São Paulo, 13414-903, Brazil.

Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA.

出版信息

Clin Oral Investig. 2023 Aug;27(8):4757-4771. doi: 10.1007/s00784-023-05104-0. Epub 2023 Jul 4.

Abstract

INTRODUCTION

Infective endocarditis (IE) is an inflammatory disease usually caused by bacteria that enter the bloodstream and establish infections in the inner linings or valves of the heart, including blood vessels. Despite the availability of modern antimicrobial and surgical treatments, IE continues to cause substantial morbidity and mortality. Oral microbiota is considered one of the most significant risk factors for IE. The objective of this study was to evaluate the microbiota present in root canal (RC) and periodontal pocket (PP) clinical samples in cases with combined endo-periodontal lesions (EPL) to detect species related to IE using NGS.

METHODS

Microbial samples were collected from 15 RCs and their associated PPs, also from 05 RCs with vital pulp tissues (negative control, NC). Genomic studies associated with bioinformatics, combined with structuring of a database (genetic sequences of bacteria reported for infective endocarditis), allowed for the assessment of the microbial community at both sites. Functional prediction was conducted using PICRUSt2.

RESULTS

Parvimonas, Streptococcus, and Enterococcus were the major genera detected in the RCs and PPs. A total of 79, 96, and 11 species were identified in the RCs, PPs, and NCs, respectively. From them, a total of 34 species from RCs, 53 from PPs, and 2 from NCs were related to IE. Functional inference demonstrated that CR and PP microbiological profiles may not be the only risk factors for IE but may also be associated with systemic diseases, including myocarditis, human cytomegalovirus infection, bacterial invasion of epithelial cells, Huntington's disease, amyotrophic lateral sclerosis, and hypertrophic cardiomyopathy. Additionally, it was possible to predict antimicrobial resistance variants for broad-spectrum drugs, including ampicillin, tetracycline, and macrolides.

CONCLUSION

Microorganisms present in the combined EPL may not be the only risk factor for IE but also for systemic diseases. Antimicrobial resistance variants for broad-spectrum drugs were inferred based on PICRUSt-2. State-of-the-art sequencing combined with bioinformatics has proven to be a powerful tool for conducting studies on microbial communities and could considerably assist in the diagnosis of serious infections.

CLINICAL RELEVANCE

Few studies have investigated the microbiota in teeth compromised by combined endo-periodontal lesions (EPL), but none have correlated the microbiological findings to any systemic condition, particularly IE, using NGS techniques. In such cases, the presence of apical periodontitis and periodontal disease can increase IE risk in susceptible patients.

摘要

简介

感染性心内膜炎(IE)是一种炎症性疾病,通常由进入血液并在心脏内部衬里或瓣膜(包括血管)中建立感染的细菌引起。尽管有现代的抗菌和手术治疗方法,IE 仍然会导致大量的发病率和死亡率。口腔微生物群被认为是 IE 的最重要危险因素之一。本研究的目的是评估合并牙周-牙髓病变(EPL)病例的根管(RC)和牙周袋(PP)临床样本中的微生物群,使用 NGS 检测与 IE 相关的物种。

方法

从 15 个 RC 和它们相关的 PP 中采集微生物样本,也从 05 个有活力牙髓组织的 RC 中采集(阴性对照,NC)。与生物信息学相结合的基因组研究,以及数据库的构建(报道的与感染性心内膜炎相关的细菌的遗传序列),允许在两个部位评估微生物群落。使用 PICRUSt2 进行功能预测。

结果

在 RC 和 PP 中检测到的主要属为 Parvimonas、Streptococcus 和 Enterococcus。RC、PP 和 NC 中分别鉴定出 79、96 和 11 种物种。其中,RC 共有 34 种,PP 共有 53 种,NC 共有 2 种与 IE 有关。功能推断表明,CR 和 PP 的微生物学特征可能不是 IE 的唯一危险因素,也可能与包括心肌炎、人类巨细胞病毒感染、细菌侵袭上皮细胞、亨廷顿病、肌萎缩侧索硬化症和肥厚型心肌病在内的系统性疾病有关。此外,还可以预测广谱药物(包括氨苄西林、四环素和大环内酯类药物)的抗微生物耐药变体。

结论

合并 EPL 中的微生物可能不仅是 IE 的危险因素,也是系统性疾病的危险因素。基于 PICRUSt-2 推断了广谱药物的抗微生物耐药变体。基于最新测序技术与生物信息学的组合已被证明是研究微生物群落的有力工具,并可极大地帮助严重感染的诊断。

临床相关性

少数研究调查了受合并牙周-牙髓病变(EPL)影响的牙齿中的微生物群,但没有一项研究使用 NGS 技术将微生物学发现与任何系统性疾病相关联,特别是 IE。在这种情况下,根尖周炎和牙周病的存在会增加易感患者患 IE 的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验