Suppr超能文献

迈向元认知:面向 EEG 分析的主体感知对比深度融合表示学习。

Toward metacognition: subject-aware contrastive deep fusion representation learning for EEG analysis.

机构信息

Baskin Engineering, UC Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.

Electrical Engineering and Computer Sciences Department, UC Berkeley, Soda Hall, Berkeley, CA, 94709, USA.

出版信息

Biol Cybern. 2023 Oct;117(4-5):363-372. doi: 10.1007/s00422-023-00967-8. Epub 2023 Jul 4.

Abstract

We propose a subject-aware contrastive learning deep fusion neural network framework for effectively classifying subjects' confidence levels in the perception of visual stimuli. The framework, called WaveFusion, is composed of lightweight convolutional neural networks for per-lead time-frequency analysis and an attention network for integrating the lightweight modalities for final prediction. To facilitate the training of WaveFusion, we incorporate a subject-aware contrastive learning approach by taking advantage of the heterogeneity within a multi-subject electroencephalogram dataset to boost representation learning and classification accuracy. The WaveFusion framework demonstrates high accuracy in classifying confidence levels by achieving a classification accuracy of 95.7% while also identifying influential brain regions.

摘要

我们提出了一种基于主题感知对比学习的深度融合神经网络框架,用于有效地对被试对视觉刺激感知的置信水平进行分类。该框架被称为 WaveFusion,由用于每个导联的时频分析的轻量级卷积神经网络和用于整合最终预测的轻量级模态的注意力网络组成。为了便于训练 WaveFusion,我们利用多被试脑电图数据集的异质性,采用基于主题感知的对比学习方法,以提高表示学习和分类准确性。WaveFusion 框架通过实现 95.7%的分类准确率,同时识别出有影响力的脑区,证明了在分类置信水平方面的高精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59dc/10600301/c292a94734ca/422_2023_967_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验