Suppr超能文献

迈向元认知:面向 EEG 分析的主体感知对比深度融合表示学习。

Toward metacognition: subject-aware contrastive deep fusion representation learning for EEG analysis.

机构信息

Baskin Engineering, UC Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA.

Electrical Engineering and Computer Sciences Department, UC Berkeley, Soda Hall, Berkeley, CA, 94709, USA.

出版信息

Biol Cybern. 2023 Oct;117(4-5):363-372. doi: 10.1007/s00422-023-00967-8. Epub 2023 Jul 4.

Abstract

We propose a subject-aware contrastive learning deep fusion neural network framework for effectively classifying subjects' confidence levels in the perception of visual stimuli. The framework, called WaveFusion, is composed of lightweight convolutional neural networks for per-lead time-frequency analysis and an attention network for integrating the lightweight modalities for final prediction. To facilitate the training of WaveFusion, we incorporate a subject-aware contrastive learning approach by taking advantage of the heterogeneity within a multi-subject electroencephalogram dataset to boost representation learning and classification accuracy. The WaveFusion framework demonstrates high accuracy in classifying confidence levels by achieving a classification accuracy of 95.7% while also identifying influential brain regions.

摘要

我们提出了一种基于主题感知对比学习的深度融合神经网络框架,用于有效地对被试对视觉刺激感知的置信水平进行分类。该框架被称为 WaveFusion,由用于每个导联的时频分析的轻量级卷积神经网络和用于整合最终预测的轻量级模态的注意力网络组成。为了便于训练 WaveFusion,我们利用多被试脑电图数据集的异质性,采用基于主题感知的对比学习方法,以提高表示学习和分类准确性。WaveFusion 框架通过实现 95.7%的分类准确率,同时识别出有影响力的脑区,证明了在分类置信水平方面的高精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59dc/10600301/c292a94734ca/422_2023_967_Fig1_HTML.jpg

相似文献

1
Toward metacognition: subject-aware contrastive deep fusion representation learning for EEG analysis.
Biol Cybern. 2023 Oct;117(4-5):363-372. doi: 10.1007/s00422-023-00967-8. Epub 2023 Jul 4.
2
WaveFusion Squeeze-and-Excitation: Towards an Accurate and Explainable Deep Learning Framework in Neuroscience.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1092-1095. doi: 10.1109/EMBC46164.2021.9630605.
3
Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
J Neural Eng. 2019 Apr;16(2):026007. doi: 10.1088/1741-2552/aaf3f6. Epub 2018 Nov 26.
4
Cross-Subject Tinnitus Diagnosis Based on Multi-Band EEG Contrastive Representation Learning.
IEEE J Biomed Health Inform. 2023 Jul;27(7):3187-3197. doi: 10.1109/JBHI.2023.3264521. Epub 2023 Jun 30.
7
Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network.
Neural Netw. 2021 Apr;136:1-10. doi: 10.1016/j.neunet.2020.12.013. Epub 2020 Dec 23.
8
Deep learning for electroencephalogram (EEG) classification tasks: a review.
J Neural Eng. 2019 Jun;16(3):031001. doi: 10.1088/1741-2552/ab0ab5. Epub 2019 Feb 26.
9
A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns.
IEEE J Biomed Health Inform. 2020 May;24(5):1333-1343. doi: 10.1109/JBHI.2019.2941222. Epub 2019 Sep 13.
10
Progressive Neighbor-masked Contrastive Learning for Fusion-style Deep Multi-view Clustering.
Neural Netw. 2024 Nov;179:106503. doi: 10.1016/j.neunet.2024.106503. Epub 2024 Jul 1.

引用本文的文献

1
What can computer vision learn from visual neuroscience? Introduction to the special issue.
Biol Cybern. 2023 Oct;117(4-5):297-298. doi: 10.1007/s00422-023-00977-6.

本文引用的文献

1
On evaluation metrics for medical applications of artificial intelligence.
Sci Rep. 2022 Apr 8;12(1):5979. doi: 10.1038/s41598-022-09954-8.
2
Power spectrum slope confounds estimation of instantaneous oscillatory frequency.
Neuroimage. 2022 Apr 15;250:118929. doi: 10.1016/j.neuroimage.2022.118929. Epub 2022 Jan 22.
3
WaveFusion Squeeze-and-Excitation: Towards an Accurate and Explainable Deep Learning Framework in Neuroscience.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1092-1095. doi: 10.1109/EMBC46164.2021.9630605.
4
DenseNet Convolutional Neural Networks Application for Predicting COVID-19 Using CT Image.
SN Comput Sci. 2021;2(5):389. doi: 10.1007/s42979-021-00782-7. Epub 2021 Jul 23.
5
BENDR: Using Transformers and a Contrastive Self-Supervised Learning Task to Learn From Massive Amounts of EEG Data.
Front Hum Neurosci. 2021 Jun 23;15:653659. doi: 10.3389/fnhum.2021.653659. eCollection 2021.
6
High-performance brain-to-text communication via handwriting.
Nature. 2021 May;593(7858):249-254. doi: 10.1038/s41586-021-03506-2. Epub 2021 May 12.
7
Uncovering the structure of clinical EEG signals with self-supervised learning.
J Neural Eng. 2021 Mar 31;18(4). doi: 10.1088/1741-2552/abca18.
10
Centro-parietal EEG potentials index subjective evidence and confidence during perceptual decision making.
Neuroimage. 2019 Nov 1;201:116011. doi: 10.1016/j.neuroimage.2019.116011. Epub 2019 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验