Yan Pumiao, Akhoundi Arash, Shah Nishal P, Tandon Pulkit, Muratore Dante G, Chichilnisky E J, Murmann Boris
IEEE Trans Biomed Circuits Syst. 2023 Aug;17(4):754-767. doi: 10.1109/TBCAS.2023.3292058. Epub 2023 Oct 6.
Future high-density and high channel count neural interfaces that enable simultaneous recording of tens of thousands of neurons will provide a gateway to study, restore and augment neural functions. However, building such technology within the bit-rate limit and power budget of a fully implantable device is challenging. The wired-OR compressive readout architecture addresses the data deluge challenge of a high channel count neural interface using lossy compression at the analog-to-digital interface. In this article, we assess the suitability of wired-OR for several steps that are important for neuroengineering, including spike detection, spike assignment and waveform estimation. For various wiring configurations of wired-OR and assumptions about the quality of the underlying signal, we characterize the trade-off between compression ratio and task-specific signal fidelity metrics. Using data from 18 large-scale microelectrode array recordings in macaque retina ex vivo, we find that for an event SNR of 7-10, wired-OR correctly detects and assigns at least 80% of the spikes with at least 50× compression. The wired-OR approach also robustly encodes action potential waveform information, enabling downstream processing such as cell-type classification. Finally, we show that by applying an LZ77-based lossless compressor (gzip) to the output of the wired-OR architecture, 1000× compression can be achieved over the baseline recordings.
未来能够同时记录数万个神经元的高密度、高通道数神经接口,将为研究、恢复和增强神经功能提供一条途径。然而,在完全可植入设备的比特率限制和功率预算范围内构建这样的技术具有挑战性。“线或”压缩读出架构在模数接口处使用有损压缩来应对高通道数神经接口的数据泛滥挑战。在本文中,我们评估了“线或”对于神经工程中几个重要步骤的适用性,包括尖峰检测、尖峰分配和波形估计。对于“线或”的各种布线配置以及关于底层信号质量的假设,我们刻画了压缩率与特定任务信号保真度指标之间的权衡。利用来自18个猕猴视网膜离体大规模微电极阵列记录的数据,我们发现对于7至10的事件信噪比,“线或”能以至少50倍的压缩率正确检测并分配至少80%的尖峰。“线或”方法还能稳健地编码动作电位波形信息,实现诸如细胞类型分类等下游处理。最后,我们表明通过将基于LZ77的无损压缩器(gzip)应用于“线或”架构的输出,可以在基线记录的基础上实现1000倍的压缩。