Suppr超能文献

相似文献

1
A 1024-Channel 268 nW/pixel 36×36 m/channel Data-Compressive Neural Recording IC for High-Bandwidth Brain-Computer Interfaces.
IEEE J Solid-State Circuits. 2024 Apr;59(4):1123-1136. doi: 10.1109/jssc.2023.3344798. Epub 2023 Dec 29.
2
A CMOS Microelectrode Array System With Reconfigurable Sub-Array Multiplexing Architecture Integrating 24,320 Electrodes and 380 Readout Channels.
IEEE Trans Biomed Circuits Syst. 2022 Dec;16(6):1044-1056. doi: 10.1109/TBCAS.2022.3211275. Epub 2023 Feb 14.
3
SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings.
Biosens Bioelectron. 2019 Feb 1;126:355-364. doi: 10.1016/j.bios.2018.10.032. Epub 2018 Oct 19.
4
Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface.
IEEE Biomed Circuits Syst Conf. 2022 Oct;2022:477-481. doi: 10.1109/biocas54905.2022.9948553. Epub 2022 Nov 16.
5
A mixed-signal multichip neural recording interface with bandwidth reduction.
IEEE Trans Biomed Circuits Syst. 2009 Jun;3(3):129-41. doi: 10.1109/TBCAS.2009.2013718.
6
A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro.
IEEE J Solid-State Circuits. 2014 Nov;49(11):2705-2719. doi: 10.1109/JSSC.2014.2359219.
7
The Design of a CMOS Nanoelectrode Array with 4096 Current-Clamp/Voltage-Clamp Amplifiers for Intracellular Recording/Stimulation of Mammalian Neurons.
IEEE J Solid-State Circuits. 2020 Sep;55(9):2567-2582. doi: 10.1109/jssc.2020.3005816. Epub 2020 Jul 9.
8
An AC-Coupled 1st-order Δ-ΔΣ Readout IC for Area-Efficient Neural Signal Acquisition.
IEEE J Solid-State Circuits. 2023 Apr;58(4):949-960. doi: 10.1109/JSSC.2023.3234612. Epub 2023 Jan 16.
9
A closed-loop compressive-sensing-based neural recording system.
J Neural Eng. 2015 Jun;12(3):036005. doi: 10.1088/1741-2560/12/3/036005. Epub 2015 Apr 15.
10
A low-power programmable neural spike detection channel with embedded calibration and data compression.
IEEE Trans Biomed Circuits Syst. 2012 Apr;6(2):87-100. doi: 10.1109/TBCAS.2012.2187352.

引用本文的文献

2
Comparison metrics and power trade-offs for BCI motor decoding circuit design.
Front Hum Neurosci. 2025 Mar 12;19:1547074. doi: 10.3389/fnhum.2025.1547074. eCollection 2025.
3
Decomposition of retinal ganglion cell electrical images for cell type and functional inference.
bioRxiv. 2023 Nov 8:2023.11.06.565889. doi: 10.1101/2023.11.06.565889.

本文引用的文献

1
An AC-Coupled 1st-order Δ-ΔΣ Readout IC for Area-Efficient Neural Signal Acquisition.
IEEE J Solid-State Circuits. 2023 Apr;58(4):949-960. doi: 10.1109/JSSC.2023.3234612. Epub 2023 Jan 16.
2
Data Compression Versus Signal Fidelity Tradeoff in Wired-OR Analog-to-Digital Compressive Arrays for Neural Recording.
IEEE Trans Biomed Circuits Syst. 2023 Aug;17(4):754-767. doi: 10.1109/TBCAS.2023.3292058. Epub 2023 Oct 6.
3
Power-saving design opportunities for wireless intracortical brain-computer interfaces.
Nat Biomed Eng. 2020 Oct;4(10):984-996. doi: 10.1038/s41551-020-0595-9. Epub 2020 Aug 3.
4
A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain-machine interfaces.
Nat Biomed Eng. 2020 Oct;4(10):973-983. doi: 10.1038/s41551-020-0591-0. Epub 2020 Jul 27.
5
A Compact Quad-Shank CMOS Neural Probe With 5,120 Addressable Recording Sites and 384 Fully Differential Parallel Channels.
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1625-1634. doi: 10.1109/TBCAS.2019.2942450. Epub 2019 Sep 19.
6
A Data-Compressive Wired-OR Readout for Massively Parallel Neural Recording.
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1128-1140. doi: 10.1109/TBCAS.2019.2935468. Epub 2019 Aug 15.
7
A Sub- μW/Ch Analog Front-End for ∆-Neural Recording With Spike-Driven Data Compression.
IEEE Trans Biomed Circuits Syst. 2019 Feb;13(1):1-14. doi: 10.1109/TBCAS.2018.2880257. Epub 2018 Nov 9.
8
Deep compressive autoencoder for action potential compression in large-scale neural recording.
J Neural Eng. 2018 Dec;15(6):066019. doi: 10.1088/1741-2552/aae18d. Epub 2018 Sep 14.
9
Brain-Machine Interfaces: Powerful Tools for Clinical Treatment and Neuroscientific Investigations.
Neuroscientist. 2019 Apr;25(2):139-154. doi: 10.1177/1073858418775355. Epub 2018 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验