Suppr超能文献

一款用于高带宽脑机接口的1024通道、每像素268纳瓦、每通道36×36平方毫米的数据压缩神经记录集成电路。

A 1024-Channel 268 nW/pixel 36×36 m/channel Data-Compressive Neural Recording IC for High-Bandwidth Brain-Computer Interfaces.

作者信息

Jang MoonHyung, Hays Maddy, Yu Wei-Han, Lee Changuk, Caragiulo Pietro, Ramkaj Athanasios, Wang Pingyu, Phillips A J, Vitale Nick, Tandon Pulkit, Yan Pumiao, Mak Pui-In, Chae Youngcheol, Chichilnisky E J, Murmann Boris, Muratore Dante G

机构信息

Department of Electrical Engineering, Stanford University, CA 94305 USA.

Department of Bioengineering, Stanford University, CA 94305 USA.

出版信息

IEEE J Solid-State Circuits. 2024 Apr;59(4):1123-1136. doi: 10.1109/jssc.2023.3344798. Epub 2023 Dec 29.

Abstract

This paper presents a data-compressive neural recording IC for single-cell resolution high-bandwidth brain-computer interfaces. The IC features wired-OR lossy compression during digitization, thus preventing data deluge and massive data movement. By discarding unwanted baseline samples of the neural signals, the output data rate is reduced by 146× on average while allowing the reconstruction of spike samples. The recording array consists of pulse position modulation-based active digital pixels with a global single-slope analog-to-digital conversion scheme, which enables a low-power and compact pixel design with significantly simple routing and low array readout energy. Fabricated in a 28-nm CMOS process, the neural recording IC features 1024 channels (i.e., 32 × 32 array) with a pixel pitch of 36 m that can be directly matched to a high-density microelectrode array. The pixel achieves 7.4 V input-referred noise with a -3 dB bandwidth of 300-Hz to 5-kHz while consuming only 268 nW from a single 1-V supply. The IC achieves the smallest area per channel (36 × 36 m) and the highest energy efficiency among the state-of-the-art neural recording ICs published to date.

摘要

本文提出了一种用于单细胞分辨率高带宽脑机接口的数据压缩神经记录集成电路。该集成电路的特点是在数字化过程中采用线或有损压缩,从而防止数据泛滥和大量数据移动。通过丢弃神经信号不需要的基线样本,输出数据速率平均降低了146倍,同时允许重建尖峰样本。记录阵列由基于脉冲位置调制的有源数字像素和全局单斜率模数转换方案组成,这使得像素设计具有低功耗和紧凑性,布线显著简单,阵列读出能量低。该神经记录集成电路采用28纳米CMOS工艺制造,具有1024个通道(即32×32阵列),像素间距为36微米,可以直接与高密度微电极阵列匹配。该像素在300赫兹至5千赫兹的-3分贝带宽下实现了7.4伏输入参考噪声,同时从单一1伏电源仅消耗268纳瓦功率。在迄今为止发表的最先进的神经记录集成电路中,该集成电路实现了每通道最小面积(36×36微米)和最高能量效率。

相似文献

4
Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface.低功耗384通道有源复用神经接口的设计与仿真
IEEE Biomed Circuits Syst Conf. 2022 Oct;2022:477-481. doi: 10.1109/biocas54905.2022.9948553. Epub 2022 Nov 16.
9
A closed-loop compressive-sensing-based neural recording system.一种基于闭环压缩感知的神经记录系统。
J Neural Eng. 2015 Jun;12(3):036005. doi: 10.1088/1741-2560/12/3/036005. Epub 2015 Apr 15.

本文引用的文献

3
Power-saving design opportunities for wireless intracortical brain-computer interfaces.无线脑机接口的节能设计机会。
Nat Biomed Eng. 2020 Oct;4(10):984-996. doi: 10.1038/s41551-020-0595-9. Epub 2020 Aug 3.
6
A Data-Compressive Wired-OR Readout for Massively Parallel Neural Recording.数据压缩线或读出在大规模并行神经记录中的应用。
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1128-1140. doi: 10.1109/TBCAS.2019.2935468. Epub 2019 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验