Suppr超能文献

机器学习辅助的啮齿动物局灶性皮质卒中后皮质内轴突可塑性的定量映射

Machine Learning-assisted Quantitative Mapping of Intracortical Axonal Plasticity Following a Focal Cortical Stroke in Rodents.

作者信息

Kim Hyung Soon, Seo Hyo Gyeong, Jhee Jong Ho, Park Chang Hyun, Lee Hyang Woon, Park Bumhee, Kim Byung Gon

机构信息

Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea.

Neuroscience Graduate Program, Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon 16499, Korea.

出版信息

Exp Neurobiol. 2023 Jun 30;32(3):170-180. doi: 10.5607/en23016.

Abstract

Stroke destroys neurons and their connections leading to focal neurological deficits. Although limited, many patients exhibit a certain degree of spontaneous functional recovery. Structural remodeling of the intracortical axonal connections is implicated in the reorganization of cortical motor representation maps, which is considered to be an underlying mechanism of the improvement in motor function. Therefore, an accurate assessment of intracortical axonal plasticity would be necessary to develop strategies to facilitate functional recovery following a stroke. The present study developed a machine learning-assisted image analysis tool based on multi-voxel pattern analysis in fMRI imaging. Intracortical axons originating from the rostral forelimb area (RFA) were anterogradely traced using biotinylated dextran amine (BDA) following a photothrombotic stroke in the mouse motor cortex. BDA-traced axons were visualized in tangentially sectioned cortical tissues, digitally marked, and converted to pixelated axon density maps. Application of the machine learning algorithm enabled sensitive comparison of the quantitative differences and the precise spatial mapping of the post-stroke axonal reorganization even in the regions with dense axonal projections. Using this method, we observed a substantial extent of the axonal sprouting from the RFA to the premotor cortex and the peri-infarct region caudal to the RFA. Therefore, the machine learningassisted quantitative axonal mapping developed in this study can be utilized to discover intracortical axonal plasticity that may mediate functional restoration following stroke.

摘要

中风会破坏神经元及其连接,导致局灶性神经功能缺损。尽管有限,但许多患者仍表现出一定程度的自发功能恢复。皮质内轴突连接的结构重塑与皮质运动表征图的重组有关,这被认为是运动功能改善的潜在机制。因此,准确评估皮质内轴突可塑性对于制定促进中风后功能恢复的策略至关重要。本研究基于功能磁共振成像(fMRI)中的多体素模式分析开发了一种机器学习辅助的图像分析工具。在小鼠运动皮质进行光血栓性中风后,使用生物素化葡聚糖胺(BDA)对源自吻侧前肢区(RFA)的皮质内轴突进行顺行追踪。在切向切片的皮质组织中可视化BDA追踪的轴突,进行数字标记,并转换为像素化的轴突密度图。机器学习算法的应用能够敏感地比较定量差异,并精确地对中风后轴突重组进行空间映射,即使在轴突投射密集的区域也是如此。使用这种方法,我们观察到从RFA到运动前皮质以及RFA尾侧的梗死周围区域有大量的轴突发芽。因此,本研究中开发的机器学习辅助定量轴突映射可用于发现可能介导中风后功能恢复的皮质内轴突可塑性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验