Ninga Xi, Sun Yanqing, Pan Yinghao, Gilbert Peter B
Department of Statistics, Colby College.
Department of Mathematics and Statistics, University of North Carolina at Charlotte.
Electron J Stat. 2025;19(1):240-290. doi: 10.1214/24-ejs2341. Epub 2025 Jan 13.
Partly interval-censored data, comprising exact and intervalcensored observations, are prevalent in biomedical, clinical, and epidemiological studies. This paper studies a flexible class of the semiparametric Cox-Aalen transformation models for regression analysis of such data. These models offer a versatile framework by accommodating both multiplicative and additive covariate effects and both constant and time-varying effects within a transformation, while also allowing for potentially time-dependent covariates. Moreover, this class of models includes many popular models such as the semiparametric transformation model, the Cox-Aalen model, the stratified Cox model, and the stratified proportional odds model as special cases. To facilitate efficient computation, we formulate a set of estimating equations and propose an Expectation-Solving (ES) algorithm that guarantees stability and rapid convergence. Under mild regularity assumptions, the resulting estimator is shown to be consistent and asymptotically normal. The validity of the weighted bootstrap is also established. A supremum test is proposed to test the time-varying covariate effects. Finally, the proposed method is evaluated through comprehensive simulations and applied to analyze data from a randomized HIV/AIDS trial.
部分区间删失数据,包括精确观测值和区间删失观测值,在生物医学、临床和流行病学研究中很常见。本文研究了一类灵活的半参数Cox-Aalen变换模型,用于对此类数据进行回归分析。这些模型通过在变换中同时考虑乘性和加性协变量效应以及恒定和时变效应,提供了一个通用框架,同时还允许潜在的随时间变化的协变量。此外,这类模型包括许多流行模型,如半参数变换模型、Cox-Aalen模型、分层Cox模型和分层比例优势模型作为特殊情况。为了便于高效计算,我们制定了一组估计方程,并提出了一种期望求解(ES)算法,该算法保证了稳定性和快速收敛。在温和的正则性假设下,结果估计量被证明是一致的且渐近正态的。加权自助法的有效性也得到了确立。提出了一个上确界检验来检验时变协变量效应。最后,通过全面的模拟对所提出的方法进行了评估,并将其应用于分析一项随机HIV/艾滋病试验的数据。