Suppr超能文献

离子迁移率中迁移率降低、离子-中性碰撞截面和α值对折合电场强度的依赖性。

The dependence of reduced mobility, ion-neutral collisional cross sections, and alpha values on reduced electric field strengths in ion mobility.

作者信息

Naylor Cameron N, Schaefer Christoph, Zimmermann Stefan

机构信息

Leibniz University Hannover, Institute of Electrical Engineering and Measurement Technology, 30167 Hannover, Germany.

出版信息

Analyst. 2023 Jul 26;148(15):3610-3621. doi: 10.1039/d3an00493g.

Abstract

As ion mobility spectrometry (IMS) is used with mass spectrometry in more applications, increased emphasis is placed on the ion-neutral collisional cross sections (CCS) to identify unknown analytes in complex matrices. While CCS values can provide useful information about relative analyte size, several critical assumptions are inherent in the most common method of calculating CCS values, the Mason-Schamp equation. The largest source of error in the Mason-Schamp equation originates from not accounting for higher reduced electric field strengths, which are present in low-pressure instruments that require calibration. Previous corrections based on field strength have been proposed in literature, but their data used atomic ions in atomic gases, whereas most applications examine molecules measured in nitrogen. Here, we use a series of halogenated anilines measured in air and nitrogen between 6-120 Td on a first principles ion mobility instrument (HiKE-IMS). With this series of measurements, the average velocity of the ion packet is known allowing for direct calculation of reduced mobilities (), alpha functions, and finally, a detailed examination of CCS as a function of /. In the worst-case scenario, there is over a 55% difference in CCS values for molecular ions measured at high fields depending on the method used. When comparing CCS values to those in a database for unknown identification, this difference can lead to misidentification. To immediately alleviate some of the error in calibration procedures, we propose an alternative method using and alpha functions that simulate first principles mobilities at higher fields.

摘要

随着离子迁移谱(IMS)与质谱在更多应用中结合使用,人们越来越重视离子-中性碰撞截面(CCS),以识别复杂基质中的未知分析物。虽然CCS值可以提供有关分析物相对大小的有用信息,但在计算CCS值的最常用方法——梅森-尚普方程中,存在几个关键假设。梅森-尚普方程中最大的误差来源是没有考虑更高的折合电场强度,这在需要校准的低压仪器中是存在的。文献中曾提出基于场强的先前校正方法,但他们的数据使用的是原子气体中的原子离子,而大多数应用研究的是在氮气中测量的分子。在此,我们在第一原理离子迁移谱仪(HiKE-IMS)上,使用在6至120 Td的空气和氮气中测量的一系列卤代苯胺。通过这一系列测量,离子包的平均速度是已知的,从而可以直接计算折合迁移率()、α函数,最终详细研究CCS作为/的函数。在最坏情况下,如果使用不同方法,高场下测量的分子离子的CCS值差异超过55%。当将CCS值与数据库中的值进行比较以进行未知物识别时,这种差异可能导致错误识别。为了立即减少校准程序中的一些误差,我们提出了一种替代方法,使用和α函数来模拟更高场强下的第一原理迁移率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验