Suppr超能文献

StrainNet:通过基于DENSE的深度学习改进心脏磁共振电影成像的心肌应变分析

StrainNet: Improved Myocardial Strain Analysis of Cine MRI by Deep Learning from DENSE.

作者信息

Wang Yu, Sun Changyu, Ghadimi Sona, Auger Daniel C, Croisille Pierre, Viallon Magalie, Mangion Kenneth, Berry Colin, Haggerty Christopher M, Jing Linyuan, Fornwalt Brandon K, Cao J Jane, Cheng Joshua, Scott Andrew D, Ferreira Pedro F, Oshinski John N, Ennis Daniel B, Bilchick Kenneth C, Epstein Frederick H

机构信息

From the Department of Biomedical Engineering, University of Virginia, Biomedical Engineering and Medical Science Building, Room 2013, MR5, Charlottesville, VA 22903 (Y.W., C.S., S.G., D.C.A., F.H.E.); Department of Biomedical, Biological and Chemical Engineering and Department of Radiology, University of Missouri, Columbia, Mo (C.S.); Department of Radiology, University Hospital of Saint Etienne, Saint Etienne, France (P.C.); CREATIS (UMR CNRS 5220, U1206 INSERM), INSA Lyon, Lyon, France (P.C., M.V.); BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland (K.M., C.B.); Department of Translational Data Science and Informatics, Geisinger Health System, Danville, Pa (C.M.H., L.J., B.K.F.); Cardiovascular Research Center, University of Kentucky, Lexington, Ky (C.M.H., L.J., B.K.F.); The Heart Center, St Francis Hospital, Roslyn, NY (J.J.C., J.C.); Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, England (A.D.S., P.F.F.); Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Ga (J.N.O.); Department of Radiology, Stanford University, Stanford, Calif (D.B.E.); Department of Medicine (K.C.B.) and Department of Radiology and Medical Imaging (F.H.E.), University of Virginia Health System, Charlottesville, Va.

出版信息

Radiol Cardiothorac Imaging. 2023 May 4;5(3):e220196. doi: 10.1148/ryct.220196. eCollection 2023 Jun.

Abstract

PURPOSE

To develop a three-dimensional (two dimensions + time) convolutional neural network trained with displacement encoding with stimulated echoes (DENSE) data for displacement and strain analysis of cine MRI.

MATERIALS AND METHODS

In this retrospective multicenter study, a deep learning model (StrainNet) was developed to predict intramyocardial displacement from contour motion. Patients with various heart diseases and healthy controls underwent cardiac MRI examinations with DENSE between August 2008 and January 2022. Network training inputs were a time series of myocardial contours from DENSE magnitude images, and ground truth data were DENSE displacement measurements. Model performance was evaluated using pixelwise end-point error (EPE). For testing, StrainNet was applied to contour motion from cine MRI. Global and segmental circumferential strain (E) derived from commercial feature tracking (FT), StrainNet, and DENSE (reference) were compared using intraclass correlation coefficients (ICCs), Pearson correlations, Bland-Altman analyses, paired tests, and linear mixed-effects models.

RESULTS

The study included 161 patients (110 men; mean age, 61 years ± 14 [SD]), 99 healthy adults (44 men; mean age, 35 years ± 15), and 45 healthy children and adolescents (21 males; mean age, 12 years ± 3). StrainNet showed good agreement with DENSE for intramyocardial displacement, with an average EPE of 0.75 mm ± 0.35. The ICCs between StrainNet and DENSE and FT and DENSE were 0.87 and 0.72, respectively, for global E and 0.75 and 0.48, respectively, for segmental E. Bland-Altman analysis showed that StrainNet had better agreement than FT with DENSE for global and segmental E.

CONCLUSION

StrainNet outperformed FT for global and segmental E analysis of cine MRI. Image Postprocessing, MR Imaging, Cardiac, Heart, Pediatrics, Technical Aspects, Technology Assessment, Strain, Deep Learning, DENSE © RSNA, 2023.

摘要

目的

开发一种三维(二维 + 时间)卷积神经网络,该网络使用受激回波位移编码(DENSE)数据进行训练,用于心脏磁共振成像(cine MRI)的位移和应变分析。

材料与方法

在这项回顾性多中心研究中,开发了一种深度学习模型(StrainNet),用于根据轮廓运动预测心肌内位移。2008年8月至2022年1月期间,患有各种心脏病的患者和健康对照者接受了DENSE心脏磁共振成像检查。网络训练输入是来自DENSE幅度图像的心肌轮廓时间序列,而地面真值数据是DENSE位移测量值。使用逐像素端点误差(EPE)评估模型性能。为了进行测试,将StrainNet应用于cine MRI的轮廓运动。使用组内相关系数(ICC)、Pearson相关性、Bland-Altman分析、配对检验和线性混合效应模型,比较了从商业特征跟踪(FT)、StrainNet和DENSE(参考)得出的整体和节段圆周应变(E)。

结果

该研究纳入了161例患者(110例男性;平均年龄61岁±14[标准差])、99例健康成年人(44例男性;平均年龄35岁±15)和45例健康儿童及青少年(21例男性;平均年龄12岁±3)。StrainNet在心肌内位移方面与DENSE显示出良好的一致性,平均EPE为0.75 mm±0.35。对于整体E,StrainNet与DENSE以及FT与DENSE之间的ICC分别为0.87和0.72;对于节段E,分别为0.75和0.48。Bland-Altman分析表明,在整体和节段E方面,StrainNet与DENSE的一致性优于FT。

结论

在cine MRI的整体和节段E分析中,StrainNet的表现优于FT。图像后处理、磁共振成像、心脏、心脏、儿科、技术方面、技术评估、应变、深度学习、DENSE ©RSNA,2023。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bca/10316292/1dcd50f1acd3/ryct.220196.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验