Xing Jiarui, Wu Nian, Bilchick Kenneth C, Epstein Frederick H, Zhang Miaomiao
Department of Electrical and Computer Engineering, University of Virginia, USA.
School of Medicine, University of Virginia Health System, USA.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635410. Epub 2024 Aug 22.
This paper presents a multimodal deep learning framework that utilizes advanced image techniques to improve the performance of clinical analysis heavily dependent on routinely acquired standard images. More specifically, we develop a joint learning network that for the first time leverages the accuracy and reproducibility of myocardial strains obtained from Displacement Encoding with Stimulated Echo (DENSE) to guide the analysis of cine cardiac magnetic resonance (CMR) imaging in late mechanical activation (LMA) detection. An image registration network is utilized to acquire the knowledge of cardiac motions, an important feature estimator of strain values, from standard cine CMRs. Our framework consists of two major components: (i) a DENSE-supervised strain network leveraging latent motion features learned from a registration network to predict myocardial strains; and (ii) a LMA network taking advantage of the predicted strain for effective LMA detection. Experimental results show that our proposed work substantially improves the performance of strain analysis and LMA detection from cine CMR images, aligning more closely with the achievements of DENSE.
本文提出了一种多模态深度学习框架,该框架利用先进的图像技术来提高严重依赖常规获取的标准图像的临床分析性能。更具体地说,我们开发了一种联合学习网络,首次利用通过刺激回波位移编码(DENSE)获得的心肌应变的准确性和可重复性,来指导在晚期机械激活(LMA)检测中对电影心脏磁共振(CMR)成像的分析。利用图像配准网络从标准电影CMR中获取心脏运动知识,这是应变值的一个重要特征估计器。我们的框架由两个主要部分组成:(i)一个DENSE监督的应变网络,利用从配准网络学到的潜在运动特征来预测心肌应变;(ii)一个LMA网络,利用预测的应变进行有效的LMA检测。实验结果表明,我们提出的工作显著提高了电影CMR图像的应变分析和LMA检测性能,与DENSE的成果更紧密地保持一致。