Suppr超能文献

一位研究者对二维半导体器件非传统实验室到制造流程的看法。

A Researcher's Perspective on Unconventional Lab-to-Fab for 2D Semiconductor Devices.

作者信息

Iyengar Sathvik Ajay, Bhattacharyya Sohini, Roy Soumyabrata, Glavin Nicholas R, Roy Ajit K, Ajayan Pulickel M

机构信息

Department of Materials Science and Nanoengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.

Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Ohio 45066, United States.

出版信息

ACS Nano. 2023 Jul 25;17(14):12955-12970. doi: 10.1021/acsnano.3c01927. Epub 2023 Jul 5.

Abstract

Current silicon technology is on the verge of reaching its performance limits. This aspect, coupled with the global chip shortage, makes a solid case for steering our attention toward the accelerated commercialization of other electronic materials. Among the available suite of emerging electronic materials, two-dimensional materials, including transition metal dichalcogenides (TMDs), exhibit improved short-channel effects, high electron mobility, and integration into CMOS-compatible processing. While these materials may not be able to replace silicon at the current stages of development, they can supplement Si in the form of Si-compatible CMOS processing and be manufactured for tailored applications. However, the major hurdle in the path of commercialization of such materials is the difficulty in producing their wafer-scale forms, which are not necessarily single crystalline but on a large scale. Recent but exploratory interest in 2D materials from industries, such as TSMC, necessitates an in-depth analysis of their commercialization potential based on trends and progress in entrenched electronic materials (Si) and ones with a short-term commercialization potential (GaN, GaAs). We also explore the possibility of unconventional fabrication techniques, such as printing, for 2D materials becoming more mainstream and being adopted by industries in the future. In this Perspective, we discuss aspects to optimize cost, time, thermal budget, and a general pathway for 2D materials to achieve similar milestones, with an emphasis on TMDs. Beyond synthesis, we propose a lab-to-fab workflow based on recent advances that can operate on a low budget with a mainstream full-scale Si fabrication unit.

摘要

当前的硅技术正濒临其性能极限。这一情况,再加上全球芯片短缺,有力地促使我们将注意力转向加速其他电子材料的商业化。在现有的一系列新兴电子材料中,包括过渡金属二硫属化物(TMDs)在内的二维材料展现出改善的短沟道效应、高电子迁移率,并且能够集成到与CMOS兼容的工艺中。虽然这些材料在当前的发展阶段可能无法取代硅,但它们可以以与硅兼容的CMOS工艺形式补充硅,并针对特定应用进行制造。然而,此类材料商业化道路上的主要障碍在于难以生产出晶圆级形式,不一定是单晶但要大规模生产。台积电等行业近期对二维材料产生的探索性兴趣,使得有必要基于成熟电子材料(硅)以及具有短期商业化潜力的材料(氮化镓、砷化镓)的趋势和进展,对二维材料的商业化潜力进行深入分析。我们还探讨了诸如印刷等非常规制造技术使二维材料在未来变得更加主流并被行业采用的可能性。在这篇视角文章中,我们讨论了优化成本、时间、热预算以及二维材料实现类似里程碑的一般途径等方面,重点是过渡金属二硫属化物。除了合成之外,我们基于近期进展提出了一种从实验室到工厂的工作流程,该流程可以在低预算下利用主流的全规模硅制造单元运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验