Suppr超能文献

基于网络的后腹膜平滑肌肉瘤总生存和肿瘤特异性生存预测列线图:基于人群的分析。

Web-based nomograms for predicting overall survival and cancer-specific survival in retroperitoneal leiomyosarcoma: a population-based analysis.

机构信息

General Surgery Department, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.

出版信息

J Cancer Res Clin Oncol. 2023 Oct;149(13):11735-11748. doi: 10.1007/s00432-023-05052-y. Epub 2023 Jul 5.

Abstract

BACKGROUND

Retroperitoneal leiomyosarcoma is a type of carcinoma with low incidence and poor prognosis, and prognostic factors are currently unknown. Therefore, our study aimed to investigate the predictive factors of RPLMS and establish prognostic nomograms.

METHODS

Patients diagnosed with RPLMS between 2004 and 2017 were selected from the Surveillance, Epidemiology, and End Results (SEER) database. Prognostic factors were identified by univariate and multivariate COX regression analyses and used to generate nomograms to predict overall survival (OS) and cancer-specific survival (CSS).

RESULTS

646 eligible patients were randomly divided into training set (n = 323) and validation set (n = 323). Multivariate COX regression analysis indicated that the independent risk factors for OS and CSS were age, tumor size, grade, SEER stage, and surgery. In the nomogram of OS, the concordance indices (C-index) of the training and validation sets were 0.72 and 0.691, and in the nomogram of CSS, the C-indices of the training and validation sets were 0.737 and 0.737. Furthermore, calibration plots showed that the predicted results of the nomograms in the training and validation sets agree well with the actual observations.

CONCLUSION

Age, tumor size, grade, SEER stage, and surgery were independent prognostic factors for RPLMS. The nomograms developed and validated in this study can accurately predict the OS and CSS of patients, which could help clinicians make individualized survival predictions. Finally, we make the two nomograms into two web calculators for the convenience of clinicians.

摘要

背景

腹膜后平滑肌肉瘤(RPLMS)是一种发病率低、预后差的癌,目前其预后因素尚不清楚。因此,本研究旨在探讨 RPLMS 的预测因素,并建立预后列线图。

方法

从监测、流行病学和最终结果(SEER)数据库中选择 2004 年至 2017 年期间诊断为 RPLMS 的患者。通过单因素和多因素 COX 回归分析确定预后因素,并用于生成预测总生存期(OS)和癌症特异性生存期(CSS)的列线图。

结果

共纳入 646 例符合条件的患者,随机分为训练集(n=323)和验证集(n=323)。多因素 COX 回归分析表明,OS 和 CSS 的独立危险因素为年龄、肿瘤大小、分级、SEER 分期和手术。在 OS 列线图中,训练集和验证集的一致性指数(C-index)分别为 0.72 和 0.691,在 CSS 列线图中,训练集和验证集的 C-index 分别为 0.737 和 0.737。此外,校准图显示,训练集和验证集列线图的预测结果与实际观察结果吻合良好。

结论

年龄、肿瘤大小、分级、SEER 分期和手术是 RPLMS 的独立预后因素。本研究建立和验证的列线图可以准确预测患者的 OS 和 CSS,有助于临床医生进行个体化的生存预测。最后,我们为了方便临床医生使用,将这两个列线图制作成了两个网络计算器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验