Suppr超能文献

基于 SEER 数据库的人群研究:预测第二原发前列腺癌患者生存的临床特征分析和预后列线图

Clinical characteristics analysis and prognostic nomogram for predicting survival in patients with second primary prostate cancer: a population study based on SEER database.

机构信息

Department of Urology, Peking University First Hospital, 8 Xishiku Street, Beijing, 100034, People's Republic of China.

出版信息

J Cancer Res Clin Oncol. 2023 Oct;149(13):11791-11806. doi: 10.1007/s00432-023-05086-2. Epub 2023 Jul 5.

Abstract

BACKGROUND AND AIMS

Second primary prostate cancer (SPPCa) is a common type of secondary malignancy that negatively impacts patient prognosis. This study aimed to identify prognostic factors for SPPCa patients and develop nomograms to assess their prognosis.

METHODS

Patients diagnosed with SPPCa between 2010 and 2015 were identified from the Surveillance, Epidemiology, and End Results (SEER) database. The study cohort was randomly divided into a training set and a validation set. Cox regression analysis, Kaplan‒Meier survival analysis, and least absolute shrinkage and selection operator regression analysis were used to identify independent prognostic factors and develop the nomogram. The nomograms were evaluated using the concordance index (C-index), calibration curve, area under the curve (AUC), and Kaplan-Meier analysis.

RESULTS

A total of 5342 SPPCa patients were included in the study. Independent prognostic factors for overall survival (OS) and cancer-specific survival (CSS) were identified as age, interval between diagnoses, first primary tumor site, and AJCC stage, N stage, M stage, PSA, Gleason score, and SPPCa surgery. Nomograms were constructed based on these prognostic factors, and the performance was evaluated using the C-index (OS: 0.733, CSS: 0.838), AUC, calibration curve, and Kaplan-Meier analysis, which demonstrated excellent predictive accuracy.

CONCLUSION

We successfully established and validated nomograms to predict OS and CSS in SPPCa patients using the SEER database. These nomograms provide an effective tool for risk stratification and prognosis assessment in SPPCa patients, which will aid clinicians in optimizing treatment strategies for this patient population.

摘要

背景与目的

第二原发前列腺癌(SPPCa)是一种常见的继发性恶性肿瘤,对患者预后有负面影响。本研究旨在确定 SPPCa 患者的预后因素,并建立列线图来评估其预后。

方法

从监测、流行病学和最终结果(SEER)数据库中确定了 2010 年至 2015 年间诊断为 SPPCa 的患者。将研究队列随机分为训练集和验证集。采用 Cox 回归分析、Kaplan-Meier 生存分析和最小绝对收缩和选择算子回归分析来识别独立的预后因素,并开发列线图。通过一致性指数(C 指数)、校准曲线、曲线下面积(AUC)和 Kaplan-Meier 分析来评估列线图。

结果

共纳入 5342 例 SPPCa 患者。总生存(OS)和癌症特异性生存(CSS)的独立预后因素为年龄、诊断间隔、首次原发肿瘤部位和 AJCC 分期、N 分期、M 分期、PSA、Gleason 评分和 SPPCa 手术。基于这些预后因素构建了列线图,并通过 C 指数(OS:0.733,CSS:0.838)、AUC、校准曲线和 Kaplan-Meier 分析评估了其性能,表明具有优异的预测准确性。

结论

我们成功地使用 SEER 数据库建立并验证了用于预测 SPPCa 患者 OS 和 CSS 的列线图。这些列线图为 SPPCa 患者的风险分层和预后评估提供了一种有效的工具,将有助于临床医生为这一患者群体优化治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验