Suppr超能文献

基于仪器化步态分析数据的多发性硬化症患者的机器学习分类。

Machine learning classification of multiple sclerosis patients based on raw data from an instrumented walkway.

机构信息

Department of Computer Science, Memorial University of Newfoundland, Newfoundland, Canada.

Faculty of Medicine, Memorial University of Newfoundland, Newfoundland, Canada.

出版信息

Biomed Eng Online. 2022 Mar 30;21(1):21. doi: 10.1186/s12938-022-00992-x.

Abstract

BACKGROUND

Using embedded sensors, instrumented walkways provide clinicians with important information regarding gait disturbances. However, because raw data are summarized into standard gait variables, there may be some salient features and patterns that are ignored. Multiple sclerosis (MS) is an inflammatory neurodegenerative disease which predominantly impacts young to middle-aged adults. People with MS may experience varying degrees of gait impairments, making it a reasonable model to test contemporary machine leaning algorithms. In this study, we employ machine learning techniques applied to raw walkway data to discern MS patients from healthy controls. We achieve this goal by constructing a range of new features which supplement standard parameters to improve machine learning model performance.

RESULTS

Eleven variables from the standard gait feature set achieved the highest accuracy of 81%, precision of 95%, recall of 81%, and F1-score of 87%, using support vector machine (SVM). The inclusion of the novel features (toe direction, hull area, base of support area, foot length, foot width and foot area) increased classification accuracy by 7%, recall by 9%, and F1-score by 6%.

CONCLUSIONS

The use of an instrumented walkway can generate rich data that is generally unseen by clinicians and researchers. Machine learning applied to standard gait variables can discern MS patients from healthy controls with excellent accuracy. Noteworthy, classifications are made stronger by including novel gait features (toe direction, hull area, base of support area, foot length and foot area).

摘要

背景

使用嵌入式传感器,仪器化步道为临床医生提供了有关步态障碍的重要信息。然而,由于原始数据被总结为标准步态变量,因此可能忽略了一些显著的特征和模式。多发性硬化症(MS)是一种炎症性神经退行性疾病,主要影响年轻人到中年人。MS 患者可能会经历不同程度的步态障碍,因此这是测试当代机器学习算法的合理模型。在这项研究中,我们运用机器学习技术应用于原始步道数据,以辨别 MS 患者和健康对照组。我们通过构建一系列新特征来实现这一目标,这些特征补充了标准参数,以提高机器学习模型的性能。

结果

使用支持向量机(SVM),标准步态特征集中的 11 个变量达到了 81%的最高准确率、95%的精度、81%的召回率和 87%的 F1 分数。新特征(脚趾方向、船体面积、支撑基础面积、足长、足宽和足面积)的加入将分类准确率提高了 7%、召回率提高了 9%、F1 分数提高了 6%。

结论

使用仪器化步道可以生成丰富的数据,这些数据通常不为临床医生和研究人员所见。机器学习应用于标准步态变量可以以优异的准确性辨别 MS 患者和健康对照组。值得注意的是,通过包括新的步态特征(脚趾方向、船体面积、支撑基础面积、足长和足面积),分类结果更加强大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfa2/8969278/42f53469efe0/12938_2022_992_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验