Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52428, Jülich, Germany.
School of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, 100124, Beijing, China.
Nat Commun. 2023 Jul 5;14(1):3963. doi: 10.1038/s41467-023-39650-8.
Magnetoelasticity is the bond between magnetism and mechanics, but the intricate mechanisms via which magnetic states change due to mechanical strain remain poorly understood. Here, we provide direct nanoscale observations of how tensile strain modifies magnetic domains in a ferromagnetic Ni thin plate using in situ Fresnel defocus imaging, off-axis electron holography and a bimetallic deformation device. We present quantitative measurements of magnetic domain wall structure and its transformations as a function of strain. We observe the formation and dissociation of strain-induced periodic 180° magnetic domain walls perpendicular to the strain axis. The magnetization transformation exhibits stress-determined directional sensitivity and is reversible and tunable through the size of the nanostructure. In this work, we provide direct evidence for expressive and deterministic magnetic hardening in ferromagnetic nanostructures, while our experimental approach allows quantifiable local measurements of strain-induced changes in the magnetic states of nanomaterials.
磁弹性是磁学和力学之间的联系,但由于机械应变导致磁状态变化的复杂机制仍未得到很好的理解。在这里,我们使用原位菲涅耳离焦成像、离轴电子全息术和双金属变形装置,提供了关于拉伸应变如何改变铁磁 Ni 薄片中磁畴的直接纳米尺度观测。我们提出了磁畴壁结构及其在应变下的转变的定量测量。我们观察到了与应变轴垂直的应变诱导周期性 180°磁畴壁的形成和解离。磁化转变表现出由应力决定的方向灵敏度,并且可以通过纳米结构的尺寸来实现可逆和可调谐。在这项工作中,我们为铁磁纳米结构中的表达性和确定性磁硬化提供了直接证据,而我们的实验方法允许对纳米材料的磁状态因应变引起的变化进行可量化的局部测量。