Graduate School of Sciences and Engineering, Koç University, 34450, Istanbul, Turkey.
Department of Industrial Engineering, College of Engineering, Koç University, 34450, Istanbul, Turkey.
BMC Bioinformatics. 2023 Jul 5;24(1):276. doi: 10.1186/s12859-023-05401-1.
In many applications of bioinformatics, data stem from distinct heterogeneous sources. One of the well-known examples is the identification of drug-target interactions (DTIs), which is of significant importance in drug discovery. In this paper, we propose a novel framework, manifold optimization based kernel preserving embedding (MOKPE), to efficiently solve the problem of modeling heterogeneous data. Our model projects heterogeneous drug and target data into a unified embedding space by preserving drug-target interactions and drug-drug, target-target similarities simultaneously.
We performed ten replications of ten-fold cross validation on four different drug-target interaction network data sets for predicting DTIs for previously unseen drugs. The classification evaluation metrics showed better or comparable performance compared to previous similarity-based state-of-the-art methods. We also evaluated MOKPE on predicting unknown DTIs of a given network. Our implementation of the proposed algorithm in R together with the scripts that replicate the reported experiments is publicly available at https://github.com/ocbinatli/mokpe .
在生物信息学的许多应用中,数据源自不同的异构源。药物-靶标相互作用(DTIs)的识别就是一个众所周知的例子,它在药物发现中具有重要意义。在本文中,我们提出了一种新颖的框架,基于流形优化的核保持嵌入(MOKPE),以有效地解决异构数据建模的问题。我们的模型通过同时保留药物-靶标相互作用和药物-药物、靶标-靶标相似性,将异构的药物和靶标数据投影到统一的嵌入空间中。
我们在四个不同的药物-靶标相互作用网络数据集上进行了十次十折交叉验证,以预测以前未见过的药物的药物-靶标相互作用。分类评估指标显示出优于或可比的性能,优于基于相似性的最新方法。我们还在预测给定网络的未知药物-靶标相互作用方面评估了 MOKPE。我们在 R 中的算法实现以及复制报告实验的脚本可在 https://github.com/ocbinatli/mokpe 上公开获取。