Suppr超能文献

莫克佩:基于流形优化的核保持嵌入的药物-靶点相互作用预测。

MOKPE: drug-target interaction prediction via manifold optimization based kernel preserving embedding.

机构信息

Graduate School of Sciences and Engineering, Koç University, 34450, Istanbul, Turkey.

Department of Industrial Engineering, College of Engineering, Koç University, 34450, Istanbul, Turkey.

出版信息

BMC Bioinformatics. 2023 Jul 5;24(1):276. doi: 10.1186/s12859-023-05401-1.

Abstract

BACKGROUND

In many applications of bioinformatics, data stem from distinct heterogeneous sources. One of the well-known examples is the identification of drug-target interactions (DTIs), which is of significant importance in drug discovery. In this paper, we propose a novel framework, manifold optimization based kernel preserving embedding (MOKPE), to efficiently solve the problem of modeling heterogeneous data. Our model projects heterogeneous drug and target data into a unified embedding space by preserving drug-target interactions and drug-drug, target-target similarities simultaneously.

RESULTS

We performed ten replications of ten-fold cross validation on four different drug-target interaction network data sets for predicting DTIs for previously unseen drugs. The classification evaluation metrics showed better or comparable performance compared to previous similarity-based state-of-the-art methods. We also evaluated MOKPE on predicting unknown DTIs of a given network. Our implementation of the proposed algorithm in R together with the scripts that replicate the reported experiments is publicly available at https://github.com/ocbinatli/mokpe .

摘要

背景

在生物信息学的许多应用中,数据源自不同的异构源。药物-靶标相互作用(DTIs)的识别就是一个众所周知的例子,它在药物发现中具有重要意义。在本文中,我们提出了一种新颖的框架,基于流形优化的核保持嵌入(MOKPE),以有效地解决异构数据建模的问题。我们的模型通过同时保留药物-靶标相互作用和药物-药物、靶标-靶标相似性,将异构的药物和靶标数据投影到统一的嵌入空间中。

结果

我们在四个不同的药物-靶标相互作用网络数据集上进行了十次十折交叉验证,以预测以前未见过的药物的药物-靶标相互作用。分类评估指标显示出优于或可比的性能,优于基于相似性的最新方法。我们还在预测给定网络的未知药物-靶标相互作用方面评估了 MOKPE。我们在 R 中的算法实现以及复制报告实验的脚本可在 https://github.com/ocbinatli/mokpe 上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c53/10324162/ca15a0dcf343/12859_2023_5401_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验