Suppr超能文献

机器学习的统一框架用于增强采样模拟的集体变量:mlcolvar。

A unified framework for machine learning collective variables for enhanced sampling simulations: mlcolvar.

机构信息

Atomistic Simulations, Italian Institute of Technology, 16156 Genova, Italy.

Department of Materials Science, Università di Milano-Bicocca, 20126 Milano, Italy.

出版信息

J Chem Phys. 2023 Jul 7;159(1). doi: 10.1063/5.0156343.

Abstract

Identifying a reduced set of collective variables is critical for understanding atomistic simulations and accelerating them through enhanced sampling techniques. Recently, several methods have been proposed to learn these variables directly from atomistic data. Depending on the type of data available, the learning process can be framed as dimensionality reduction, classification of metastable states, or identification of slow modes. Here, we present mlcolvar, a Python library that simplifies the construction of these variables and their use in the context of enhanced sampling through a contributed interface to the PLUMED software. The library is organized modularly to facilitate the extension and cross-contamination of these methodologies. In this spirit, we developed a general multi-task learning framework in which multiple objective functions and data from different simulations can be combined to improve the collective variables. The library's versatility is demonstrated through simple examples that are prototypical of realistic scenarios.

摘要

确定一组简化的集体变量对于理解原子模拟并通过增强采样技术加速它们至关重要。最近,已经提出了几种从原子数据中直接学习这些变量的方法。根据可用数据的类型,学习过程可以被框定为降维、亚稳状态的分类或慢模式的识别。在这里,我们介绍了 mlcolvar,这是一个 Python 库,通过为 PLUMED 软件提供一个贡献接口,简化了这些变量的构建,并在增强采样的上下文中使用它们。该库采用模块化组织,便于扩展和交叉污染这些方法。本着这种精神,我们开发了一个通用的多任务学习框架,其中可以组合多个目标函数和来自不同模拟的数据,以提高集体变量的性能。该库的多功能性通过简单的示例得到了证明,这些示例是现实场景的典型代表。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验