Department of Biological Sciences, National University of Singapore , Singapore, Singapore.
Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore , Singapore, Singapore.
mSystems. 2023 Aug 31;8(4):e0038723. doi: 10.1128/msystems.00387-23. Epub 2023 Jul 6.
There are gaps in our understandings on how did the evolutionary relationships among members of the phytobiomes shape their ability to produce tremendously complex specialized metabolites under the influence of plant host. To determine these relationships, we investigated the phylogenetic conservation of biosynthetic gene clusters (BGCs) on a global collection of 4,519 high-quality and nonredundant (out of 12,181) bacterial isolates and metagenome-assembled genomes from 47 different plant hosts and soil, by adopting three independent phylogenomic approaches (-test, Pagel's λ, and consenTRAIT). We report that the BGCs are phylogenetically conserved to varying strengths and depths in their different classes. We show that the ability to produce specialized metabolites qualifies as a complex trait, and the depth of conservation is equivalent to ecologically relevant complex microbial traits. Interestingly, terpene and aryl polyene BGCs had the strongest phylogenetic conservation in the phytobiomes, but not in the soil microbiomes. Furthermore, we showed that terpenes are largely uncharacterized in phytobiomes and pinpointed specific clades that harbor potentially novel terpenes. Taken together, this study sheds light on the evolution of specialized metabolites' biosynthesis potential in phytobiomes under the influence of plant hosts and presents strategies to rationally guide the discovery of potentially novel classes of metabolites. IMPORTANCE This study expands our understandings of the biosynthetic potential of phytobiomes by using such worldwide and extensive collection of microbiomes from plants and soil. Apart from providing such vital resource for the plant microbiome researchers, this study provides fundamental insights into the evolution of biosynthetic gene clusters (BGCs) in phytobiomes under the influence of plant host. Specifically, we report that the strength of phylogenetic conservation in microbiomes varies for different classes of BGCs and is influenced as a result of plant host association. Furthermore, our results indicate that biosynthetic potential of specialized metabolites is deeply conserved equivalent to other complex and ecologically relevant microbial traits. Finally, for the most conserved class of specialized metabolites (terpenes), we identified clades harboring potentially novel class of molecules. Future studies could focus on plant-microbe coevolution and interactions through specialized metabolites building upon these findings.
我们对于植物生物群成员之间的进化关系如何影响它们在植物宿主影响下产生极为复杂的特化代谢物的能力的理解存在差距。为了确定这些关系,我们通过采用三种独立的系统发育基因组学方法(-test、Pagel's λ 和 consenTRAIT),对来自 47 种不同植物宿主和土壤的 4519 个高质量且非冗余(共 12181 个)细菌分离株和宏基因组组装基因组的全球数据集进行了生物合成基因簇(BGCs)的系统发育保守性研究。我们报告说,BGCs 在不同类别中具有不同强弱和深度的系统发育保守性。我们表明,产生特化代谢物的能力是一种复杂特征,其保守程度与生态相关的复杂微生物特征相当。有趣的是,萜类和芳族聚烯 BGCs 在植物生物群中具有最强的系统发育保守性,但在土壤微生物群中并非如此。此外,我们表明萜类在植物生物群中在很大程度上尚未被描述,并指出了可能含有新型萜类化合物的特定进化枝。总之,这项研究揭示了植物宿主影响下植物生物群中特化代谢物生物合成潜力的进化,并提出了合理指导潜在新型代谢物类别的发现的策略。
这项研究通过使用来自植物和土壤的如此广泛的微生物组全球数据集,扩展了我们对植物生物群生物合成潜力的理解。除了为植物微生物组研究人员提供这样的重要资源外,这项研究还为植物宿主影响下植物生物群中生物合成基因簇(BGCs)的进化提供了基本见解。具体而言,我们报告说,微生物组中不同 BGC 类别的系统发育保守性强度因植物宿主的关联而有所不同。此外,我们的结果表明,特化代谢物的生物合成潜力深度保守,与其他复杂和生态相关的微生物特征相当。最后,对于最保守的特化代谢物(萜类)类别,我们确定了可能含有新型分子的进化枝。未来的研究可以通过专门的代谢物在这些发现的基础上,重点研究植物-微生物的共同进化和相互作用。