Suppr超能文献

基于网络的列线图和风险分层系统,用于预测老年原发性肾癌患者手术后的总体生存率。

Web-based nomogram and risk stratification system constructed for predicting the overall survival of older adults with primary kidney cancer after surgical resection.

机构信息

Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun, 130000, China.

Department of Oncology, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, 615099, China.

出版信息

J Cancer Res Clin Oncol. 2023 Oct;149(13):11873-11889. doi: 10.1007/s00432-023-05072-8. Epub 2023 Jul 6.

Abstract

BACKGROUND

Kidney cancer (KC) is one of the most common malignant tumors in adults which particularly affects the survival of elderly patients. We aimed to construct a nomogram to predict overall survival (OS) in elderly KC patients after surgery.

METHODS

Information on all primary KC patients aged more than 65 years and treated with surgery between 2010 and 2015 was downloaded from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate Cox regression analysis was used to identify the independent prognostic factors. Consistency index (C-index), receiver operating characteristic curve (ROC), the area under curve (AUC), and calibration curve were used to assess the accuracy and validity of the nomogram. Comparison of the clinical benefits of nomogram and the TNM staging system is done by decision curve analysis (DCA) and time-dependent ROC.

RESULTS

A total of 15,989 elderly KC patients undergoing surgery were included. All patients were randomly divided into training set (N = 11,193, 70%) and validation set (N = 4796, 30%). The nomogram produced C-indexes of 0.771 (95% CI 0.751-0.791) and 0.792 (95% CI 0.763-0.821) in the training and validation sets, respectively, indicating that the nomogram has excellent predictive accuracy. The ROC, AUC, and calibration curves also showed the same excellent results. In addition, DCA and time-dependent ROC showed that the nomogram outperformed the TNM staging system with better net clinical benefits and predictive efficacy.

CONCLUSIONS

Independent influencing factors for postoperative OS in elderly KC patients were sex, age, histological type, tumor size, grade, surgery, marriage, radiotherapy, and T-, N-, and M-stage. The web-based nomogram and risk stratification system could assist surgeons and patients in clinical decision-making.

摘要

背景

肾癌(KC)是成年人中最常见的恶性肿瘤之一,尤其影响老年患者的生存。我们旨在构建一个列线图来预测老年 KC 患者手术后的总生存期(OS)。

方法

从监测、流行病学和最终结果(SEER)数据库中下载了 2010 年至 2015 年间接受手术治疗的所有年龄超过 65 岁的原发性 KC 患者的信息。使用单变量和多变量 Cox 回归分析确定独立的预后因素。一致性指数(C 指数)、接受者操作特征曲线(ROC)、曲线下面积(AUC)和校准曲线用于评估列线图的准确性和有效性。通过决策曲线分析(DCA)和时间依赖性 ROC 比较列线图和 TNM 分期系统的临床获益。

结果

共纳入 15989 例接受手术治疗的老年 KC 患者。所有患者被随机分为训练集(N=11193,70%)和验证集(N=4796,30%)。该列线图在训练集和验证集中产生的 C 指数分别为 0.771(95%CI 0.751-0.791)和 0.792(95%CI 0.763-0.821),表明该列线图具有出色的预测准确性。ROC、AUC 和校准曲线也显示出相同的出色结果。此外,DCA 和时间依赖性 ROC 表明,该列线图在预测疗效方面优于 TNM 分期系统,具有更好的净临床获益。

结论

老年 KC 患者术后 OS 的独立影响因素为性别、年龄、组织学类型、肿瘤大小、分级、手术、婚姻、放疗以及 T、N 和 M 期。基于网络的列线图和风险分层系统可以帮助外科医生和患者进行临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验