"Luiz de Queiroz" College of Agriculture, Soil Science Department, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil.
Department of Agronomy, Purdue University, West Lafayette, IN, 47906, USA.
Braz J Microbiol. 2023 Sep;54(3):1955-1967. doi: 10.1007/s42770-023-01058-3. Epub 2023 Jul 6.
Arbuscular mycorrhizal fungi form symbiotic associations with 80-90% of all known plants, allowing the fungi to acquire plant-synthesized carbon, and confer an increased capacity for nutrient uptake by plants, improving tolerance to abiotic and biotic stresses. We aimed at characterizing the mycorrhizal community in the rhizosphere of Neoglaziovia variegata (so-called caroa) and Tripogonella spicata (so-called resurrection plant), using high-throughput sequencing of the partial 18S rRNA gene. Both plants are currently undergoing a bioprospecting program to find microbes with the potential of helping plants tolerate water stress. Sampling was carried out in the Caatinga biome, a neotropical dry forest, located in northeastern Brazil. Illumina MiSeq sequencing of 37 rhizosphere samples (19 for N. variegata and 18 for T. spicata) revealed a distinct mycorrhizal community between the studied plants. According to alpha diversity analyses, T. spicata showed the highest richness and diversity based on the Observed ASVs and the Shannon index, respectively. On the other hand, N. variegata showed higher modularity of the mycorrhizal network compared to T. spicata. The four most abundant genera found (higher than 10%) were Glomus, Gigaspora, Acaulospora, and Scutellospora, with Glomus being the most abundant in both plants. Nonetheless, Gigaspora, Diversispora, and Ambispora were found only in the rhizosphere of N. variegata, whilst Scutellospora, Paraglomus, and Archaeospora were exclusive to the rhizosphere of T. spicata. Therefore, the community of arbuscular mycorrhizal fungi of the rhizosphere of each plant encompasses a unique composition, structure and modularity, which can differentially assist them in the hostile environment.
丛枝菌根真菌与 80-90%的已知植物形成共生关系,使真菌能够获取植物合成的碳,并赋予植物更高的养分吸收能力,提高其对非生物和生物胁迫的耐受性。我们旨在通过高通量测序部分 18S rRNA 基因,对 Neoglaziovia variegata(所谓的“caroa”)和 Tripogonella spicata(所谓的“复活植物”)根际的菌根群落进行特征描述。这两种植物目前正在进行生物勘探计划,以寻找具有帮助植物耐受水分胁迫潜力的微生物。采样在巴西东北部的新热带旱地森林——卡廷加生物群落进行。对 37 个根际样本(19 个用于 N. variegata,18 个用于 T. spicata)进行的 Illumina MiSeq 测序揭示了研究植物之间截然不同的菌根群落。根据 alpha 多样性分析,T. spicata 分别根据观察到的 ASVs 和 Shannon 指数显示出最高的丰富度和多样性。另一方面,与 T. spicata 相比,N. variegata 显示出更高的菌根网络模块性。发现的四个最丰富的属(高于 10%)是 Glomus、Gigaspora、Acaulospora 和 Scutellospora,其中 Glomus 在两种植物中最为丰富。尽管如此,仅在 N. variegata 的根际中发现了 Gigaspora、Diversispora 和 Ambispora,而 Scutellospora、Paraglomus 和 Archaeospora 仅存在于 T. spicata 的根际中。因此,每种植物根际丛枝菌根真菌的群落都包含独特的组成、结构和模块性,这可以使它们在恶劣的环境中产生不同的影响。