Suppr超能文献

与巴西新热带干旱森林中地方性陆生凤梨科植物和草本植物根际相关的丛枝菌根真菌。

Arbuscular mycorrhizal fungi associated with the rhizosphere of an endemic terrestrial bromeliad and a grass in the Brazilian neotropical dry forest.

机构信息

"Luiz de Queiroz" College of Agriculture, Soil Science Department, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil.

Department of Agronomy, Purdue University, West Lafayette, IN, 47906, USA.

出版信息

Braz J Microbiol. 2023 Sep;54(3):1955-1967. doi: 10.1007/s42770-023-01058-3. Epub 2023 Jul 6.

Abstract

Arbuscular mycorrhizal fungi form symbiotic associations with 80-90% of all known plants, allowing the fungi to acquire plant-synthesized carbon, and confer an increased capacity for nutrient uptake by plants, improving tolerance to abiotic and biotic stresses. We aimed at characterizing the mycorrhizal community in the rhizosphere of Neoglaziovia variegata (so-called caroa) and Tripogonella spicata (so-called resurrection plant), using high-throughput sequencing of the partial 18S rRNA gene. Both plants are currently undergoing a bioprospecting program to find microbes with the potential of helping plants tolerate water stress. Sampling was carried out in the Caatinga biome, a neotropical dry forest, located in northeastern Brazil. Illumina MiSeq sequencing of 37 rhizosphere samples (19 for N. variegata and 18 for T. spicata) revealed a distinct mycorrhizal community between the studied plants. According to alpha diversity analyses, T. spicata showed the highest richness and diversity based on the Observed ASVs and the Shannon index, respectively. On the other hand, N. variegata showed higher modularity of the mycorrhizal network compared to T. spicata. The four most abundant genera found (higher than 10%) were Glomus, Gigaspora, Acaulospora, and Scutellospora, with Glomus being the most abundant in both plants. Nonetheless, Gigaspora, Diversispora, and Ambispora were found only in the rhizosphere of N. variegata, whilst Scutellospora, Paraglomus, and Archaeospora were exclusive to the rhizosphere of T. spicata. Therefore, the community of arbuscular mycorrhizal fungi of the rhizosphere of each plant encompasses a unique composition, structure and modularity, which can differentially assist them in the hostile environment.

摘要

丛枝菌根真菌与 80-90%的已知植物形成共生关系,使真菌能够获取植物合成的碳,并赋予植物更高的养分吸收能力,提高其对非生物和生物胁迫的耐受性。我们旨在通过高通量测序部分 18S rRNA 基因,对 Neoglaziovia variegata(所谓的“caroa”)和 Tripogonella spicata(所谓的“复活植物”)根际的菌根群落进行特征描述。这两种植物目前正在进行生物勘探计划,以寻找具有帮助植物耐受水分胁迫潜力的微生物。采样在巴西东北部的新热带旱地森林——卡廷加生物群落进行。对 37 个根际样本(19 个用于 N. variegata,18 个用于 T. spicata)进行的 Illumina MiSeq 测序揭示了研究植物之间截然不同的菌根群落。根据 alpha 多样性分析,T. spicata 分别根据观察到的 ASVs 和 Shannon 指数显示出最高的丰富度和多样性。另一方面,与 T. spicata 相比,N. variegata 显示出更高的菌根网络模块性。发现的四个最丰富的属(高于 10%)是 Glomus、Gigaspora、Acaulospora 和 Scutellospora,其中 Glomus 在两种植物中最为丰富。尽管如此,仅在 N. variegata 的根际中发现了 Gigaspora、Diversispora 和 Ambispora,而 Scutellospora、Paraglomus 和 Archaeospora 仅存在于 T. spicata 的根际中。因此,每种植物根际丛枝菌根真菌的群落都包含独特的组成、结构和模块性,这可以使它们在恶劣的环境中产生不同的影响。

相似文献

4
Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil.
J Hazard Mater. 2013 Nov 15;262:1105-15. doi: 10.1016/j.jhazmat.2012.09.063. Epub 2012 Oct 5.
5
Arbuscular mycorrhizal fungi in Mimosa tenuiflora (Willd.) Poir from Brazilian semi-arid.
Braz J Microbiol. 2016 Apr-Jun;47(2):359-66. doi: 10.1016/j.bjm.2016.01.023. Epub 2016 Mar 2.
6
Diversity of Arbuscular Mycorrhizal Fungi in a Brazilian Atlantic Forest Toposequence.
Microb Ecol. 2016 Jan;71(1):164-77. doi: 10.1007/s00248-015-0661-0. Epub 2015 Aug 25.
8
Abundance and distribution of arbuscular mycorrhizal fungi associated with oil-yielding plants.
J Basic Microbiol. 2023 Jul;63(7):814-827. doi: 10.1002/jobm.202300012. Epub 2023 Apr 3.
9
Prevalence of mycorrhizae in host plants and rhizosphere soil: A biodiversity aspect.
PLoS One. 2022 Mar 31;17(3):e0266403. doi: 10.1371/journal.pone.0266403. eCollection 2022.

引用本文的文献

1
Microbial survival strategies in desiccated roots of .
Front Microbiol. 2025 Mar 28;16:1560114. doi: 10.3389/fmicb.2025.1560114. eCollection 2025.

本文引用的文献

1
Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts.
Nat Ecol Evol. 2022 Aug;6(8):1145-1154. doi: 10.1038/s41559-022-01799-8. Epub 2022 Jul 7.
2
Best practices in metabarcoding of fungi: From experimental design to results.
Mol Ecol. 2022 May;31(10):2769-2795. doi: 10.1111/mec.16460. Epub 2022 Apr 20.
3
Global taxonomic and phylogenetic assembly of AM fungi.
Mycorrhiza. 2022 Mar;32(2):135-144. doi: 10.1007/s00572-022-01072-7. Epub 2022 Feb 9.
5
Measuring biological diversity.
Curr Biol. 2021 Oct 11;31(19):R1174-R1177. doi: 10.1016/j.cub.2021.07.049.
7
Gastroprotective Activity of (Arruda) Mez. (Bromeliaceae) in Rats and Mice.
J Med Food. 2021 Oct;24(10):1113-1123. doi: 10.1089/jmf.2020.0182. Epub 2021 Aug 23.
8
Mycorrhizae Helper Bacteria: Unlocking Their Potential as Bioenhancers of Plant-Arbuscular Mycorrhizal Fungal Associations.
Microb Ecol. 2022 Jul;84(1):1-10. doi: 10.1007/s00248-021-01831-7. Epub 2021 Aug 21.
9
Systems biology of resurrection plants.
Cell Mol Life Sci. 2021 Oct;78(19-20):6365-6394. doi: 10.1007/s00018-021-03913-8. Epub 2021 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验