Suppr超能文献

呼吁提高电子健康记录中老年性与性别少数群体数据的完整性。

A call to action to improve the completeness of older adult sexual and gender minority data in electronic health records.

机构信息

Duke University, School of Nursing, Durham, North Carolina, USA.

出版信息

J Am Med Inform Assoc. 2023 Sep 25;30(10):1725-1729. doi: 10.1093/jamia/ocad130.

Abstract

Sexual and gender minority (SGM) older adults experience greater health disparities compared to non-SGM older adults. The SGM older adult population is growing rapidly. To address this disparity and gain a better understanding of their unique challenges in healthcare relies on accurate data collection. We conducted a secondary data analysis of 2018-2022 electronic health record data for older adults aged ≥50 years, in 1 large academic health system to determine the source, magnitude, and correlates of missing sexual orientation and gender identity (SOGI) data among hospitalized older adults. Among 153 827 older adults discharged from the hospital, SOGI data missingness was 67.6% for sexual orientation and 63.0% for gender identity. SOGI data are underreported, leading to bias findings when studying health disparities. Without complete SOGI data, healthcare systems will not fully understand the unique needs of SGM individuals and develop tailored interventions and programs to reduce health disparities among these populations.

摘要

性少数群体(SGM)老年人与非 SGM 老年人相比,存在更大的健康差异。SGM 老年人口增长迅速。为了解决这一差异,并更好地了解他们在医疗保健方面的独特挑战,需要准确收集数据。我们对 1 个大型学术医疗系统 2018-2022 年≥50 岁的老年患者的电子健康记录数据进行了二次数据分析,以确定住院老年患者中缺失的性取向和性别认同(SOGI)数据的来源、程度和相关性。在出院的 153827 名老年人中,性取向数据缺失率为 67.6%,性别认同数据缺失率为 63.0%。SOGI 数据报告不足,导致在研究健康差异时出现偏差。如果没有完整的 SOGI 数据,医疗保健系统将无法充分了解 SGM 个体的独特需求,并制定有针对性的干预措施和计划,以减少这些人群中的健康差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验