Suppr超能文献

培养护士科学家和相关健康研究人员在人工智能及减轻偏差方面的能力。

Building competency in artificial intelligence and bias mitigation for nurse scientists and aligned health researchers.

作者信息

Cary Michael P, Grady Siobahn D, McMillian-Bohler Jacquelyn, Bessias Sophia, Silcox Christina, Silva Susan, Guilamo-Ramos Vincent, McCall Jonathan, Sperling Jessica, Goldstein Benjamin A

机构信息

School of Nursing, Duke University, Durham, NC; Duke AI Health, Duke University School of Medicine, Durham, NC.

Library and Information Sciences, North Carolina Central University, Durham, NC.

出版信息

Nurs Outlook. 2025 May-Jun;73(3):102395. doi: 10.1016/j.outlook.2025.102395. Epub 2025 May 2.

Abstract

Healthcare systems are increasingly integrating artificial intelligence and machine learning (AI/ML) tools into patient care, potentially influencing clinical decisions for millions. However, concerns are growing about these tools reinforcing systemic inequities. To address bias in AI/ML tools and promote equitable outcomes, guidelines for mitigating this bias and comprehensive workforce training programs are necessary. In response, we developed the multifaceted Human-Centered Use of Multidisciplinary AI for Next-Gen Education and Research (HUMAINE), informed by a comprehensive scoping review, training workshops, and a research symposium. The curriculum, which focuses on structural inequities in algorithms that contribute to health disparities, is designed to equip scientists with AI/ML competencies that allow them to effectively address these structural inequities and promote health equity. The curriculum incorporates the perspectives of clinicians, biostatisticians, engineers, and policymakers to harness AI's transformative potential, with the goal of building an inclusive ecosystem where cutting-edge technology and ethical AI governance converge to create a more equitable healthcare future for all.

摘要

医疗保健系统越来越多地将人工智能和机器学习(AI/ML)工具整合到患者护理中,这可能会影响数百万人的临床决策。然而,人们越来越担心这些工具会加剧系统性不平等。为了解决AI/ML工具中的偏差并促进公平结果,制定减轻这种偏差的指南和全面的劳动力培训计划是必要的。作为回应,我们开展了多方面的“下一代教育与研究中多学科人工智能的以人为本应用”(HUMAINE)项目,该项目以全面的范围审查、培训研讨会和研究座谈会为依据。该课程侧重于算法中导致健康差距的结构性不平等,旨在使科学家具备AI/ML能力,使他们能够有效解决这些结构性不平等并促进健康公平。该课程纳入了临床医生、生物统计学家、工程师和政策制定者的观点,以发挥人工智能的变革潜力,目标是建立一个包容性的生态系统,在这个系统中,前沿技术与符合伦理的人工智能治理相结合,为所有人创造一个更公平的医疗保健未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8452/12178818/f3ecb02d72bb/nihms-2069932-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验