Heidelberger Institut Für Global Health, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 130/3, 69120, Heidelberg, Germany.
Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Ste Catherine Road, Montreal, QC, H3T 1E2, Canada.
BMC Health Serv Res. 2023 Jul 6;23(1):735. doi: 10.1186/s12913-023-09726-8.
Individual participant data meta-analyses (IPD-MAs), which involve harmonising and analysing participant-level data from related studies, provide several advantages over aggregate data meta-analyses, which pool study-level findings. IPD-MAs are especially important for building and evaluating diagnostic and prognostic models, making them an important tool for informing the research and public health responses to COVID-19.
We conducted a rapid systematic review of protocols and publications from planned, ongoing, or completed COVID-19-related IPD-MAs to identify areas of overlap and maximise data request and harmonisation efforts. We searched four databases using a combination of text and MeSH terms. Two independent reviewers determined eligibility at the title-abstract and full-text stages. Data were extracted by one reviewer into a pretested data extraction form and subsequently reviewed by a second reviewer. Data were analysed using a narrative synthesis approach. A formal risk of bias assessment was not conducted.
We identified 31 COVID-19-related IPD-MAs, including five living IPD-MAs and ten IPD-MAs that limited their inference to published data (e.g., case reports). We found overlap in study designs, populations, exposures, and outcomes of interest. For example, 26 IPD-MAs included RCTs; 17 IPD-MAs were limited to hospitalised patients. Sixteen IPD-MAs focused on evaluating medical treatments, including six IPD-MAs for antivirals, four on antibodies, and two that evaluated convalescent plasma.
Collaboration across related IPD-MAs can leverage limited resources and expertise by expediting the creation of cross-study participant-level data datasets, which can, in turn, fast-track evidence synthesis for the improved diagnosis and treatment of COVID-19.
10.17605/OSF.IO/93GF2.
个体参与者数据荟萃分析(IPD-MA)涉及协调和分析相关研究的参与者水平数据,与汇总研究水平结果的汇总数据荟萃分析相比,具有多项优势。IPD-MA 对于构建和评估诊断和预后模型尤为重要,是为 COVID-19 的研究和公共卫生应对提供信息的重要工具。
我们对计划进行的、正在进行的或已完成的 COVID-19 相关 IPD-MA 的方案和出版物进行了快速系统综述,以确定重叠领域,并最大限度地提高数据请求和协调工作。我们使用文本和 MeSH 术语的组合在四个数据库中进行了搜索。两名独立审查员在标题-摘要和全文阶段确定了合格性。一名审查员将数据提取到预先测试的数据提取表中,然后由第二名审查员进行审查。使用叙述性综合方法进行数据分析。没有进行正式的偏倚风险评估。
我们确定了 31 项 COVID-19 相关的 IPD-MA,包括 5 项正在进行的 IPD-MA 和 10 项将其推断限于已发表数据的 IPD-MA(例如病例报告)。我们发现研究设计、人群、暴露和感兴趣的结局存在重叠。例如,26 项 IPD-MA 包括 RCT;17 项 IPD-MA 仅限于住院患者。16 项 IPD-MA 专注于评估医疗治疗,包括 6 项抗病毒药物的 IPD-MA、4 项针对抗体的 IPD-MA 和 2 项评估恢复期血浆的 IPD-MA。
通过加速跨研究参与者水平数据集的创建,相关 IPD-MA 之间的协作可以利用有限的资源和专业知识,从而加快 COVID-19 的诊断和治疗的证据综合。
10.17605/OSF.IO/93GF2。