Suppr超能文献

传染病随机数学模型的阈值动力学。

Threshold dynamics of a stochastic mathematical model for infections.

机构信息

Department of Mathematics, Chongqing Jiaotong University, Chongqing, People's Republic of China.

Department of Mathematics, Shaanxi Normal University, Xi'an, People's Republic of China.

出版信息

J Biol Dyn. 2023 Dec;17(1):2231967. doi: 10.1080/17513758.2023.2231967.

Abstract

A stochastic mathematical model is proposed to study how environmental heterogeneity and the augmentation of mosquitoes with bacteria affect the outcomes of dengue disease. The existence and uniqueness of the positive solutions of the system are studied. Then the V-geometrically ergodicity and stochastic ultimate boundedness are investigated. Further, threshold conditions for successful population replacement are derived and the existence of a unique ergodic steady-state distribution of the system is explored. The results show that the ratio of infected to uninfected mosquitoes has a great influence on population replacement. Moreover, environmental noise plays a significant role in control of dengue fever.

摘要

本文提出了一个随机数学模型,用以研究环境异质性和细菌对蚊子的增强如何影响登革热疾病的结果。研究了系统正解的存在唯一性。然后研究了 V-几何遍历性和随机有界性。进一步,推导了成功种群替换的阈值条件,并探讨了系统的唯一遍历稳定分布的存在性。结果表明,感染和未感染蚊子的比例对种群替换有很大影响。此外,环境噪声在控制登革热方面起着重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验