Zeng Yaqiong, Zhao Jian, Wang Shifu, Ren Xinyi, Tan Yuanlong, Lu Ying-Rui, Xi Shibo, Wang Junhu, Jaouen Frédéric, Li Xuning, Huang Yanqiang, Zhang Tao, Liu Bin
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.
University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
J Am Chem Soc. 2023 Jul 19;145(28):15600-15610. doi: 10.1021/jacs.3c05457. Epub 2023 Jul 7.
Single-atom catalysts with a well-defined metal center open unique opportunities for exploring the catalytically active site and reaction mechanism of chemical reactions. However, understanding of the electronic and structural dynamics of single-atom catalytic centers under reaction conditions is still limited due to the challenge of combining techniques that are sensitive to such sites and model single-atom systems. Herein, supported by state-of-the-art techniques, we provide an in-depth study of the dynamic structural and electronic evolution during the electrochemical CO reduction reaction (CORR) of a model catalyst comprising iron only as a high-spin (HS) Fe(III)N center in its resting state. Fe Mössbauer and X-ray absorption spectroscopies clearly evidence the change from a HS Fe(III)N to a HS Fe(II)N center with decreasing potential, CO- or Ar-saturation of the electrolyte, leading to different adsorbates and stability of the HS Fe(II)N center. With Raman spectroscopy and cyclic voltammetry, we identify that the phthalocyanine (Pc) ligand coordinating the iron cation center undergoes a redox process from Fe(II)Pc to Fe(II)Pc. Altogether, the HS Fe(II)Pc species is identified as the catalytic intermediate for CORR. Furthermore, theoretical calculations reveal that the electroreduction of the Pc ligand modifies the d-band center of the generated HS Fe(II)Pc species, resulting in an optimal binding strength to CO and thus boosting the catalytic performance of CORR. This work provides both experimental and theoretical evidence toward the electronic structural and dynamics of reactive sites in single-Fe-atom materials and shall guide the design of novel efficient catalysts for CORR.
具有明确金属中心的单原子催化剂为探索化学反应的催化活性位点和反应机理提供了独特的机会。然而,由于将对这些位点敏感的技术与单原子系统模型相结合面临挑战,目前对于反应条件下单原子催化中心的电子和结构动力学的理解仍然有限。在此,在先进技术的支持下,我们对一种仅以高自旋(HS)Fe(III)N中心作为静止状态的模型催化剂在电化学CO还原反应(CORR)过程中的动态结构和电子演化进行了深入研究。Fe穆斯堡尔谱和X射线吸收光谱清楚地证明,随着电位降低、电解质的CO或Ar饱和,HS Fe(III)N中心转变为HS Fe(II)N中心,导致HS Fe(II)N中心具有不同的吸附物和稳定性。通过拉曼光谱和循环伏安法,我们确定与铁阳离子中心配位的酞菁(Pc)配体经历了从Fe(II)Pc到Fe(II)Pc的氧化还原过程。总之,HS Fe(II)Pc物种被确定为CORR的催化中间体。此外,理论计算表明,Pc配体的电还原改变了生成的HS Fe(II)Pc物种的d带中心,从而产生了对CO的最佳结合强度,进而提高了CORR的催化性能。这项工作为单铁原子材料中活性位点的电子结构和动力学提供了实验和理论依据,并将指导新型高效CORR催化剂的设计。