Suppr超能文献

代谢与调控的整合揭示了对非天然基质生长的快速适应能力。

Integration of metabolism and regulation reveals rapid adaptability to growth on non-native substrates.

机构信息

Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA.

Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA.

出版信息

Cell Chem Biol. 2023 Sep 21;30(9):1135-1143.e5. doi: 10.1016/j.chembiol.2023.06.009. Epub 2023 Jul 7.

Abstract

Engineering synthetic heterotrophy is a key to the efficient bio-based valorization of renewable and waste substrates. Among these, engineering hemicellulosic pentose utilization has been well-explored in Saccharomyces cerevisiae (yeast) over several decades-yet the answer to what makes their utilization inherently recalcitrant remains elusive. Through implementation of a semi-synthetic regulon, we find that harmonizing cellular and engineering objectives are a key to obtaining highest growth rates and yields with minimal metabolic engineering effort. Concurrently, results indicate that "extrinsic" factors-specifically, upstream genes that direct flux of pentoses into central carbon metabolism-are rate-limiting. We also reveal that yeast metabolism is innately highly adaptable to rapid growth on non-native substrates and that systems metabolic engineering (i.e., functional genomics, network modeling, etc.) is largely unnecessary. Overall, this work provides an alternate, novel, holistic (and yet minimalistic) approach based on integrating non-native metabolic genes with a native regulon system.

摘要

工程化合成异养是高效利用可再生和废物基质进行生物转化的关键。在这些基质中,几十年来人们一直在酿酒酵母(yeast)中对木质纤维素戊糖的利用进行了广泛的工程化探索——但对于是什么导致它们的利用本质上具有抗性,答案仍然难以捉摸。通过实施半合成调控系统,我们发现协调细胞和工程目标是获得最高生长速率和产率的关键,同时需要最小的代谢工程努力。同时,结果表明,“外在”因素——特别是指导戊糖进入中心碳代谢的上游基因——是限速的。我们还揭示了酵母代谢天生能够快速适应非天然底物的生长,并且系统代谢工程(即功能基因组学、网络建模等)在很大程度上是不必要的。总的来说,这项工作提供了一种基于整合非天然代谢基因与天然调控系统的替代、新颖、整体(但又简约)的方法。

相似文献

1
Integration of metabolism and regulation reveals rapid adaptability to growth on non-native substrates.
Cell Chem Biol. 2023 Sep 21;30(9):1135-1143.e5. doi: 10.1016/j.chembiol.2023.06.009. Epub 2023 Jul 7.
2
Pentose Metabolism in Saccharomyces cerevisiae: The Need to Engineer Global Regulatory Systems.
Biotechnol J. 2019 Jan;14(1):e1800364. doi: 10.1002/biot.201800364. Epub 2018 Sep 19.
3
Towards universal synthetic heterotrophy using a metabolic coordinator.
Metab Eng. 2023 Sep;79:14-26. doi: 10.1016/j.ymben.2023.07.001. Epub 2023 Jul 4.
4
[Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
Sheng Wu Gong Cheng Xue Bao. 2018 Oct 25;34(10):1543-1555. doi: 10.13345/j.cjb.180031.
5
Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
PLoS One. 2011;6(11):e27316. doi: 10.1371/journal.pone.0027316. Epub 2011 Nov 4.
7
Metabolic engineering for pentose utilization in Saccharomyces cerevisiae.
Adv Biochem Eng Biotechnol. 2007;108:147-77. doi: 10.1007/10_2007_062.
8
Metabolic Engineering for Improved Fermentation of L-Arabinose.
J Microbiol Biotechnol. 2019 Mar 28;29(3):339-346. doi: 10.4014/jmb.1812.12015.
9
Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose.
FEMS Yeast Res. 2020 Feb 1;20(1). doi: 10.1093/femsyr/foz089.
10
D-Xylose Sensing in : Insights from D-Glucose Signaling and Native D-Xylose Utilizers.
Int J Mol Sci. 2021 Nov 17;22(22):12410. doi: 10.3390/ijms222212410.

引用本文的文献

1
Engineering Saccharomyces cerevisiae for growth on xylose using an oxidative pathway.
Appl Microbiol Biotechnol. 2025 Jan 28;109(1):30. doi: 10.1007/s00253-025-13417-1.
2
Towards universal synthetic heterotrophy using a metabolic coordinator.
Metab Eng. 2023 Sep;79:14-26. doi: 10.1016/j.ymben.2023.07.001. Epub 2023 Jul 4.

本文引用的文献

1
Towards universal synthetic heterotrophy using a metabolic coordinator.
Metab Eng. 2023 Sep;79:14-26. doi: 10.1016/j.ymben.2023.07.001. Epub 2023 Jul 4.
2
In-depth Sequence-Function Characterization Reveals Multiple Pathways to Enhance Enzymatic Activity.
ACS Catal. 2022 Feb 18;12(4):2381-2396. doi: 10.1021/acscatal.1c05508. Epub 2022 Feb 1.
3
High efficient production of plant flavonoids by microbial cell factories: Challenges and opportunities.
Metab Eng. 2022 Mar;70:143-154. doi: 10.1016/j.ymben.2022.01.011. Epub 2022 Jan 25.
5
Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review.
Bioresour Technol. 2021 Oct;337:125484. doi: 10.1016/j.biortech.2021.125484. Epub 2021 Jul 3.
6
Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae.
Biotechnol J. 2021 Apr;16(4):e2000142. doi: 10.1002/biot.202000142. Epub 2020 Nov 13.
7
Engineering of Pentose Transport in for Biotechnological Applications.
Front Bioeng Biotechnol. 2020 Jan 29;7:464. doi: 10.3389/fbioe.2019.00464. eCollection 2019.
8
Structure-based directed evolution improves growth on xylose by influencing in vivo enzyme performance.
Biotechnol Biofuels. 2020 Jan 11;13:5. doi: 10.1186/s13068-019-1643-0. eCollection 2020.
9
Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast.
Cell Syst. 2019 Dec 18;9(6):534-547.e5. doi: 10.1016/j.cels.2019.10.006. Epub 2019 Nov 13.
10
Systems Metabolic Engineering Meets Machine Learning: A New Era for Data-Driven Metabolic Engineering.
Biotechnol J. 2019 Sep;14(9):e1800416. doi: 10.1002/biot.201800416. Epub 2019 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验