Suppr超能文献

酿酒酵母戊糖代谢:工程全局调控系统的必要性。

Pentose Metabolism in Saccharomyces cerevisiae: The Need to Engineer Global Regulatory Systems.

机构信息

Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, U.S.A.

出版信息

Biotechnol J. 2019 Jan;14(1):e1800364. doi: 10.1002/biot.201800364. Epub 2018 Sep 19.

Abstract

Extending the host substrate range of industrially relevant microbes, such as Saccharomyces cerevisiae, has been a highly-active area of research since the conception of metabolic engineering. Yet, rational strategies that enable non-native substrate utilization in this yeast without the need for combinatorial and/or evolutionary techniques are underdeveloped. Herein, this review focuses on pentose metabolism in S. cerevisiae as a case study to highlight the challenges in this field. In the last three decades, work has focused on expressing exogenous pentose metabolizing enzymes as well as endogenous enzymes for effective pentose assimilation, growth, and biofuel production. The engineering strategies that are employed for pentose assimilation in this yeast are reviewed, and compared with metabolism and regulation of native sugar, galactose. In the case of galactose metabolism, multiple signals regulate and aid growth in the presence of the sugar. However, for pentoses that are non-native, it is unclear if similar growth and regulatory signals are activated. Such a comparative analysis aids in identifying missing links in xylose and arabinose utilization. While research on pentose metabolism have mostly concentrated on pathway level optimization, recent transcriptomics analyses highlight the need to consider more global regulatory, structural, and signaling components.

摘要

自代谢工程概念提出以来,扩展工业相关微生物(如酿酒酵母)的宿主基质范围一直是一个非常活跃的研究领域。然而,在不需要组合和/或进化技术的情况下,使该酵母能够利用非天然基质的合理策略尚未得到充分发展。本文以酿酒酵母的戊糖代谢为例,重点介绍了该领域的挑战。在过去的三十年中,人们致力于表达外源戊糖代谢酶以及内源酶,以实现有效戊糖同化、生长和生物燃料生产。本文综述了该酵母中用于戊糖同化的工程策略,并与天然糖(半乳糖)的代谢和调控进行了比较。在半乳糖代谢的情况下,多种信号在糖存在的情况下调节和促进生长。然而,对于非天然的戊糖,尚不清楚是否激活了类似的生长和调节信号。这种比较分析有助于确定木糖和阿拉伯糖利用中缺失的环节。虽然戊糖代谢的研究主要集中在途径水平的优化上,但最近的转录组学分析强调需要考虑更多的全局调控、结构和信号成分。

相似文献

1
Pentose Metabolism in Saccharomyces cerevisiae: The Need to Engineer Global Regulatory Systems.
Biotechnol J. 2019 Jan;14(1):e1800364. doi: 10.1002/biot.201800364. Epub 2018 Sep 19.
2
Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
PLoS One. 2011;6(11):e27316. doi: 10.1371/journal.pone.0027316. Epub 2011 Nov 4.
4
[Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae].
Sheng Wu Gong Cheng Xue Bao. 2018 Oct 25;34(10):1543-1555. doi: 10.13345/j.cjb.180031.
5
Metabolic engineering for pentose utilization in Saccharomyces cerevisiae.
Adv Biochem Eng Biotechnol. 2007;108:147-77. doi: 10.1007/10_2007_062.
6
Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts.
FEMS Microbiol Rev. 2021 Aug 17;45(4). doi: 10.1093/femsre/fuaa069.
7
Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2016 Mar;100(5):2487-98. doi: 10.1007/s00253-015-7211-z. Epub 2015 Dec 16.
8
Metabolic Engineering for Improved Fermentation of L-Arabinose.
J Microbiol Biotechnol. 2019 Mar 28;29(3):339-346. doi: 10.4014/jmb.1812.12015.
9
On the role of GAPDH isoenzymes during pentose fermentation in engineered Saccharomyces cerevisiae.
FEMS Yeast Res. 2014 May;14(3):389-98. doi: 10.1111/1567-1364.12137. Epub 2014 Feb 13.
10
Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae.
Biotechnol J. 2011 Mar;6(3):286-99. doi: 10.1002/biot.201000301. Epub 2011 Feb 9.

引用本文的文献

2
Enhanced Sugar and Bioethanol Production from Broom Grass via NaOH-Autoclave Pretreatment.
Polymers (Basel). 2025 Jan 21;17(3):266. doi: 10.3390/polym17030266.
3
Engineering of for co-fermentation of glucose and xylose: Current state and perspectives.
Eng Microbiol. 2023 Mar 20;3(3):100084. doi: 10.1016/j.engmic.2023.100084. eCollection 2023 Sep.
4
Carbon substrates promotes stress resistance and drug tolerance in clinical isolates of Candida tropicalis.
Arch Microbiol. 2024 May 20;206(6):270. doi: 10.1007/s00203-024-04000-9.
5
Construction of an alternative NADPH regeneration pathway improves ethanol production in with xylose metabolic pathway.
Synth Syst Biotechnol. 2024 Feb 28;9(2):269-276. doi: 10.1016/j.synbio.2024.02.004. eCollection 2024 Jun.
7
Integration of metabolism and regulation reveals rapid adaptability to growth on non-native substrates.
Cell Chem Biol. 2023 Sep 21;30(9):1135-1143.e5. doi: 10.1016/j.chembiol.2023.06.009. Epub 2023 Jul 7.
8
Deletion of in a recombinant improved xylose utilization and affected transcription of genes related to amino acid metabolism.
Front Microbiol. 2022 Sep 8;13:960114. doi: 10.3389/fmicb.2022.960114. eCollection 2022.
9
Studies Regarding the Pharmaceutical Potential of Derivative Products from .
Plants (Basel). 2022 Jul 12;11(14):1827. doi: 10.3390/plants11141827.
10
D-Xylose Sensing in : Insights from D-Glucose Signaling and Native D-Xylose Utilizers.
Int J Mol Sci. 2021 Nov 17;22(22):12410. doi: 10.3390/ijms222212410.

本文引用的文献

2
A semi-synthetic regulon enables rapid growth of yeast on xylose.
Nat Commun. 2018 Mar 26;9(1):1233. doi: 10.1038/s41467-018-03645-7.
3
RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization.
Biotechnol Bioeng. 2018 Jun;115(6):1552-1560. doi: 10.1002/bit.26570. Epub 2018 Mar 13.
5
Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in .
mBio. 2017 Aug 8;8(4):e00855-17. doi: 10.1128/mBio.00855-17.
7
Improved Xylose Metabolism by a Mutant of Saccharomyces cerevisiae.
Appl Environ Microbiol. 2017 May 17;83(11). doi: 10.1128/AEM.00095-17. Print 2017 Jun 1.
9
Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7428-E7437. doi: 10.1073/pnas.1603577113. Epub 2016 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验