Tang Guangzhi, Vadivel Kanishkan, Xu Yingfu, Bilgic Refik, Shidqi Kevin, Detterer Paul, Traferro Stefano, Konijnenburg Mario, Sifalakis Manolis, van Schaik Gert-Jan, Yousefzadeh Amirreza
Imec, Eindhoven, Netherlands.
Imec, Leuven, Belgium.
Front Neurosci. 2023 Jun 23;17:1187252. doi: 10.3389/fnins.2023.1187252. eCollection 2023.
Neuromorphic processors aim to emulate the biological principles of the brain to achieve high efficiency with low power consumption. However, the lack of flexibility in most neuromorphic architecture designs results in significant performance loss and inefficient memory usage when mapping various neural network algorithms. This paper proposes SENECA, a digital neuromorphic architecture that balances the trade-offs between flexibility and efficiency using a hierarchical-controlling system. A SENECA core contains two controllers, a flexible controller (RISC-V) and an optimized controller (Loop Buffer). This flexible computational pipeline allows for deploying efficient mapping for various neural networks, on-device learning, and pre-post processing algorithms. The hierarchical-controlling system introduced in SENECA makes it one of the most efficient neuromorphic processors, along with a higher level of programmability. This paper discusses the trade-offs in digital neuromorphic processor design, explains the SENECA architecture, and provides detailed experimental results when deploying various algorithms on the SENECA platform. The experimental results show that the proposed architecture improves energy and area efficiency and illustrates the effect of various trade-offs in algorithm design. A SENECA core consumes 0.47 mm when synthesized in the GF-22 nm technology node and consumes around 2.8 pJ per synaptic operation. SENECA architecture scales up by connecting many cores with a network-on-chip. The SENECA platform and the tools used in this project are freely available for academic research upon request.
神经形态处理器旨在模拟大脑的生物学原理,以实现低功耗下的高效率。然而,大多数神经形态架构设计缺乏灵活性,导致在映射各种神经网络算法时出现显著的性能损失和内存使用效率低下的问题。本文提出了SENECA,一种数字神经形态架构,它使用分层控制系统来平衡灵活性和效率之间的权衡。一个SENECA核心包含两个控制器,一个灵活控制器(RISC-V)和一个优化控制器(循环缓冲区)。这种灵活的计算管道允许为各种神经网络、片上学习和预处理-后处理算法部署高效映射。SENECA中引入的分层控制系统使其成为最高效的神经形态处理器之一,同时具有更高的可编程性。本文讨论了数字神经形态处理器设计中的权衡,解释了SENECA架构,并提供了在SENECA平台上部署各种算法时的详细实验结果。实验结果表明,所提出的架构提高了能量和面积效率,并说明了算法设计中各种权衡的影响。在GF-22纳米技术节点中合成时,一个SENECA核心消耗0.47平方毫米,每次突触操作消耗约2.8皮焦耳。SENECA架构通过片上网络连接多个核心来实现扩展。SENECA平台和本项目中使用的工具可应要求免费提供用于学术研究。