Suppr超能文献

一种用于实现随机二进制尖峰时间依赖可塑性的 CMOS 忆阻器混合系统。

A CMOS-memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity.

机构信息

Instituto de Microelectrónica de Sevilla, IMSE-CNM (CSIC and Universidad de Sevilla), Av. Américo Vespucio 28, 41092 Sevilla, Spain.

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Jul 25;380(2228):20210018. doi: 10.1098/rsta.2021.0018. Epub 2022 Jun 6.

Abstract

This paper describes a fully experimental hybrid system in which a [Formula: see text] memristive crossbar spiking neural network (SNN) was assembled using custom high-resistance state memristors with analogue CMOS neurons fabricated in 180 nm CMOS technology. The custom memristors used NMOS selector transistors, made available on a second 180 nm CMOS chip. One drawback is that memristors operate with currents in the micro-amperes range, while analogue CMOS neurons may need to operate with currents in the pico-amperes range. One possible solution was to use a compact circuit to scale the memristor-domain currents down to the analogue CMOS neuron domain currents by at least 5-6 orders of magnitude. Here, we proposed using an on-chip compact current splitter circuit based on MOS ladders to aggressively attenuate the currents by over 5 orders of magnitude. This circuit was added before each neuron. This paper describes the proper experimental operation of an SNN circuit using a [Formula: see text] 1T1R synaptic crossbar together with four post-synaptic CMOS circuits, each with a 5-decade current attenuator and an integrate-and-fire neuron. It also demonstrates one-shot winner-takes-all training and stochastic binary spike-timing-dependent-plasticity learning using this small system. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.

摘要

本文描述了一个完全实验性的混合系统,该系统使用定制的高电阻状态忆阻器组装了一个[Formula: see text]忆阻交叉点尖峰神经网络(SNN),这些忆阻器采用模拟 CMOS 神经元,在 180nm CMOS 技术中制造。定制的忆阻器使用 NMOS 选择器晶体管,这些晶体管可在第二个 180nm CMOS 芯片上获得。一个缺点是忆阻器的工作电流在微安范围内,而模拟 CMOS 神经元的工作电流可能需要在皮安范围内。一种可能的解决方案是使用紧凑电路将忆阻器域电流按至少 5-6 个数量级缩小到模拟 CMOS 神经元域电流。在这里,我们提出使用基于 MOS 梯的片上紧凑电流分配器电路通过超过 5 个数量级来强烈衰减电流。该电路被添加到每个神经元之前。本文描述了使用[Formula: see text]1T1R 突触交叉点与四个后突触 CMOS 电路一起使用 SNN 电路的适当实验操作,每个电路都有一个 5 个数量级的电流衰减器和一个积分和点火神经元。它还展示了使用这个小系统进行一次性胜者全拿训练和随机二进制尖峰时间依赖可塑性学习。本文是主题为“先进神经技术:为健康和福祉转化创新”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03a0/9168445/1b6fb5d94d97/rsta20210018f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验