Suppr超能文献

用于微混合器教育模块的机器学习增强流体动力学模拟

Machine learning-augmented fluid dynamics simulations for micromixer educational module.

作者信息

Birtek Mehmet Tugrul, Alseed M Munzer, Sarabi Misagh Rezapour, Ahmadpour Abdollah, Yetisen Ali K, Tasoglu Savas

机构信息

School of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey.

Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey.

出版信息

Biomicrofluidics. 2023 Jul 5;17(4):044101. doi: 10.1063/5.0146375. eCollection 2023 Jul.

Abstract

Micromixers play an imperative role in chemical and biomedical systems. Designing compact micromixers for laminar flows owning a low Reynolds number is more challenging than flows with higher turbulence. Machine learning models can enable the optimization of the designs and capabilities of microfluidic systems by receiving input from a training library and producing algorithms that can predict the outcomes prior to the fabrication process to minimize development cost and time. Here, an educational interactive microfluidic module is developed to enable the design of compact and efficient micromixers at low Reynolds regimes for Newtonian and non-Newtonian fluids. The optimization of Newtonian fluids designs was based on a machine learning model, which was trained by simulating and calculating the mixing index of 1890 different micromixer designs. This approach utilized a combination of six design parameters and the results as an input data set to a two-layer deep neural network with 100 nodes in each hidden layer. A trained model was achieved with R = 0.9543 that can be used to predict the mixing index and find the optimal parameters needed to design micromixers. Non-Newtonian fluid cases were also optimized using 56700 simulated designs with eight varying input parameters, reduced to 1890 designs, and then trained using the same deep neural network used for Newtonian fluids to obtain R = 0.9063. The framework was subsequently used as an interactive educational module, demonstrating a well-structured integration of technology-based modules such as using artificial intelligence in the engineering curriculum, which can highly contribute to engineering education.

摘要

微混合器在化学和生物医学系统中发挥着至关重要的作用。为低雷诺数的层流设计紧凑型微混合器比为湍流程度更高的流动设计更具挑战性。机器学习模型可以通过接收来自训练库的输入并生成能够在制造过程之前预测结果的算法,从而实现微流体系统设计和性能的优化,以最小化开发成本和时间。在此,开发了一个具有教育意义的交互式微流体模块,以实现为牛顿流体和非牛顿流体在低雷诺数状态下设计紧凑且高效的微混合器。牛顿流体设计的优化基于一个机器学习模型,该模型通过模拟和计算1890种不同微混合器设计的混合指数进行训练。这种方法利用六个设计参数的组合以及结果作为输入数据集,输入到一个在每个隐藏层有100个节点的两层深度神经网络中。得到了一个训练模型,其R值为0.9543,可用于预测混合指数并找到设计微混合器所需的最优参数。非牛顿流体的情况也使用56700个具有八个不同输入参数的模拟设计进行了优化,缩减至1890个设计,然后使用与牛顿流体相同的深度神经网络进行训练,得到R值为0.9063。该框架随后被用作一个交互式教育模块,展示了基于技术的模块(如在工程课程中使用人工智能)的良好结构化整合,这对工程教育有很大贡献。

相似文献

3
Deep convolutional neural network and IoT technology for healthcare.用于医疗保健的深度卷积神经网络和物联网技术。
Digit Health. 2024 Jan 17;10:20552076231220123. doi: 10.1177/20552076231220123. eCollection 2024 Jan-Dec.
8
Optimal designs of staggered dean vortex micromixers.交错式迪恩涡微混合器的优化设计
Int J Mol Sci. 2011;12(6):3500-24. doi: 10.3390/ijms12063500. Epub 2011 Jun 3.

本文引用的文献

1
Disposable paper-based microfluidics for fertility testing.用于生育力检测的一次性纸质微流控技术。
iScience. 2022 Aug 18;25(9):104986. doi: 10.1016/j.isci.2022.104986. eCollection 2022 Sep 16.
4
A hybrid micromixer with planar mixing units.一种带有平面混合单元的混合微混合器。
RSC Adv. 2018 Sep 25;8(58):33103-33120. doi: 10.1039/c8ra05763j. eCollection 2018 Sep 24.
5
Magnetic levitation for space exploration.磁悬浮技术在太空探索中的应用。
Trends Biotechnol. 2022 Aug;40(8):915-917. doi: 10.1016/j.tibtech.2022.03.010. Epub 2022 Apr 21.
9
Artificial intelligence in healthcare.人工智能在医疗保健领域的应用。
Nat Biomed Eng. 2018 Oct;2(10):719-731. doi: 10.1038/s41551-018-0305-z. Epub 2018 Oct 10.
10
A guide to deep learning in healthcare.深度学习在医疗保健中的应用指南。
Nat Med. 2019 Jan;25(1):24-29. doi: 10.1038/s41591-018-0316-z. Epub 2019 Jan 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验