System Dynamics Lab, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India.
Solid Mechanics Lab, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India.
Proc Inst Mech Eng H. 2023 Aug;237(8):958-974. doi: 10.1177/09544119231186074. Epub 2023 Jul 10.
This work provides an innovative endodontic instrument fault detection methodology during root canal treatment (RCT). Sometimes, an endodontic instrument is prone to fracture from the tip, for causes uncertain the dentist's control. A comprehensive assessment and decision support system for an endodontist may avoid several breakages. This research proposes a machine learning and artificial intelligence-based approach that can help to diagnose instrument health. During the RCT, force signals are recorded using a dynamometer. From the acquired signals, statistical features are extracted. Because there are fewer instances of the minority class (i.e. faulty/moderate class), oversampling of datasets is required to avoid bias and overfitting. Therefore, the synthetic minority oversampling technique (SMOTE) is employed to increase the minority class. Further, evaluating the performance using the machine learning techniques, namely Gaussian Naïve Bayes (GNB), quadratic support vector machine (QSVM), fine k-nearest neighbor (FKNN), and ensemble bagged tree (EBT). The EBT model provides excellent performance relative to the GNB, QSVM, and FKNN. Machine learning (ML) algorithms can accurately detect endodontic instruments' faults by monitoring the force signals. The EBT and FKNN classifier is trained exceptionally well with an area under curve values of 1.0 and 0.99 and prediction accuracy of 98.95 and 97.56%, respectively. ML can potentially enhance clinical outcomes, boost learning, decrease process malfunctions, increase treatment efficacy, and enhance instrument performance, contributing to superior RCT processes. This work uses ML methodologies for fault detection of endodontic instruments, providing practitioners with an adequate decision support system.
这项工作提供了一种创新的根管治疗(RCT)期间牙髓器械故障检测方法。有时,牙髓器械从尖端断裂,原因不确定在牙医的控制之下。全面的评估和决策支持系统可以避免根管器械多次断裂。本研究提出了一种基于机器学习和人工智能的方法,可以帮助诊断器械的健康状况。在 RCT 过程中,使用测力计记录力信号。从获得的信号中提取统计特征。由于少数类(即故障/中等类)的实例较少,因此需要对数据集进行过采样以避免偏差和过拟合。因此,采用了合成少数过采样技术(SMOTE)来增加少数类。此外,使用机器学习技术(即高斯朴素贝叶斯(GNB)、二次支持向量机(QSVM)、精细 K-最近邻(FKNN)和集成袋装树(EBT))来评估性能。EBT 模型相对于 GNB、QSVM 和 FKNN 提供了出色的性能。通过监测力信号,机器学习(ML)算法可以准确检测牙髓器械的故障。EBT 和 FKNN 分类器的训练效果非常好,曲线下面积值分别为 1.0 和 0.99,预测精度分别为 98.95%和 97.56%。ML 可以潜在地提高临床效果,促进学习,减少工艺故障,提高治疗效果,增强器械性能,从而提高 RCT 过程的效果。这项工作使用 ML 方法来检测牙髓器械的故障,为从业者提供了一个充分的决策支持系统。