Cheng Xiaxia, He Dongyi, Zhou Man, Zhang Ping, Wang Shuting, Ren Linlin, Sun Rong, Zeng Xiaoliang
School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Nano Lett. 2023 Jul 26;23(14):6673-6680. doi: 10.1021/acs.nanolett.3c01882. Epub 2023 Jul 10.
Thermal resistance at a soft/hard material interface plays an undisputed role in the development of electronic packaging, sensors, and medicine. Adhesion energy and phonon spectra match are two crucial parameters in determining the interfacial thermal resistance (ITR), but it is difficult to simultaneously achieve these two parameters in one system to reduce the ITR at the soft/hard material interface. Here, we report a design of an elastomer composite consisting of a polyurethane-thioctic acid copolymer and microscale spherical aluminum, which exhibits both high phonon spectra match and high adhesion energy (>1000 J/m) with hard materials, thus leading to a low ITR of 0.03 mm·K/W. We further develop a quantitative physically based model connecting the adhesion energy and ITR, revealing the key role the adhesion energy plays. This work serves to engineer the ITR at the soft/hard material interface from the aspect of adhesion energy, which will prompt a paradigm shift in the development of interface science.
软/硬材料界面处的热阻在电子封装、传感器及医学发展中发挥着无可争议的作用。粘附能和声子谱匹配是决定界面热阻(ITR)的两个关键参数,但在一个系统中同时实现这两个参数以降低软/硬材料界面处的ITR却很困难。在此,我们报道了一种由聚氨酯-硫辛酸共聚物和微米级球形铝组成的弹性体复合材料设计,该材料与硬质材料同时展现出高声子谱匹配和高粘附能(>1000 J/m),从而实现了0.03 mm·K/W的低界面热阻。我们进一步建立了一个基于物理的定量模型,将粘附能与界面热阻联系起来,揭示了粘附能所起的关键作用。这项工作旨在从粘附能方面对软/硬材料界面处的界面热阻进行调控,这将推动界面科学发展的范式转变。