Suppr超能文献

云和气态热力学过程的辐射反馈作用塑造了陆地表面温度和湍流通量。

Radiative controls by clouds and thermodynamics shape surface temperatures and turbulent fluxes over land.

机构信息

Biospheric Theory and Modelling Group, Max Planck Institute for Biogeochemistry, Jena 07745, Germany.

International Max Planck Research School for Global Biogeochemical Cycles, Jena 07745, Germany.

出版信息

Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2220400120. doi: 10.1073/pnas.2220400120. Epub 2023 Jul 10.

Abstract

Land surface temperatures (LSTs) are strongly shaped by radiation but are modulated by turbulent fluxes and hydrologic cycling as the presence of water vapor in the atmosphere (clouds) and at the surface (evaporation) affects temperatures across regions. Here, we used a thermodynamic systems framework forced with independent observations to show that the climatological variations in LSTs across dry and humid regions are mainly mediated through radiative effects. We first show that the turbulent fluxes of sensible and latent heat are constrained by thermodynamics and the local radiative conditions. This constraint arises from the ability of radiative heating at the surface to perform work to maintain turbulent fluxes and sustain vertical mixing within the convective boundary layer. This implies that reduced evaporative cooling in dry regions is then compensated for by an increased sensible heat flux and buoyancy, which is consistent with observations. We show that the mean temperature variation across dry and humid regions is mainly controlled by clouds that reduce surface heating by solar radiation. Using satellite observations for cloudy and clear-sky conditions, we show that clouds cool the land surface over humid regions by up to 7 K, while in arid regions, this effect is absent due to the lack of clouds. We conclude that radiation and thermodynamic limits are the primary controls on LSTs and turbulent flux exchange which leads to an emergent simplicity in the observed climatological patterns within the complex climate system.

摘要

陆面温度(LST)强烈地受到辐射的影响,但由于大气(云)和地表(蒸发)中的水汽会影响到区域间的温度,因此也受到湍流通量和水文循环的调节。在这里,我们使用了一个热力学系统框架,并利用独立的观测数据进行了驱动,结果表明,干湿地区的 LST 气候变异主要是通过辐射效应来介导的。我们首先表明,感热和潜热的湍流通量受到热力学和局部辐射条件的限制。这种限制源于表面辐射加热有能力做功,以维持湍流通量并维持对流边界层内的垂直混合。这意味着,在干燥地区,蒸发冷却减少会被增加的感热通量和浮力所补偿,这与观测结果是一致的。我们表明,干湿地区之间的平均温度变化主要由云控制,云减少了太阳辐射对地表的加热。利用卫星观测到的云区和晴空条件,我们表明,云在湿润地区使陆面冷却了多达 7 K,而在干旱地区,由于缺乏云,这种效应不存在。我们的结论是,辐射和热力学限制是 LST 和湍流通量交换的主要控制因素,这导致在复杂的气候系统中,观测到的气候模式具有明显的简单性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c26f/10629566/ead546c9fb4c/pnas.2220400120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验