Suppr超能文献

具有可变折叠的蛋白质揭示了基于AlphaFold的蛋白质结构预测中的盲点。

Proteins with alternative folds reveal blind spots in AlphaFold-based protein structure prediction.

作者信息

Chakravarty Devlina, Lee Myeongsang, Porter Lauren L

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA; Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

出版信息

Curr Opin Struct Biol. 2025 Feb;90:102973. doi: 10.1016/j.sbi.2024.102973. Epub 2025 Jan 4.

Abstract

In recent years, advances in artificial intelligence (AI) have transformed structural biology, particularly protein structure prediction. Though AI-based methods, such as AlphaFold (AF), often predict single conformations of proteins with high accuracy and confidence, predictions of alternative folds are often inaccurate, low-confidence, or simply not predicted at all. Here, we review three blind spots that alternative conformations reveal about AF-based protein structure prediction. First, proteins that assume conformations distinct from their training-set homologs can be mispredicted. Second, AF overrelies on its training set to predict alternative conformations. Third, degeneracies in pairwise representations can lead to high-confidence predictions inconsistent with experiment. These weaknesses suggest approaches to predict alternative folds more reliably.

摘要

近年来,人工智能(AI)的进展改变了结构生物学,尤其是蛋白质结构预测。尽管基于人工智能的方法,如AlphaFold(AF),通常能高精度且高可信度地预测蛋白质的单一构象,但对替代折叠的预测往往不准确、可信度低,或者根本没有预测出来。在这里,我们回顾了替代构象揭示的关于基于AF的蛋白质结构预测的三个盲点。首先,呈现出与其训练集同源物不同构象的蛋白质可能会被错误预测。其次,AF过度依赖其训练集来预测替代构象。第三,成对表示中的简并性可能导致与实验不一致的高可信度预测。这些弱点提示了更可靠地预测替代折叠的方法。

相似文献

7
Prediction of protein structure and AI.蛋白质结构预测与人工智能。
J Hum Genet. 2024 Oct;69(10):477-480. doi: 10.1038/s10038-023-01215-4. Epub 2024 Jan 4.

引用本文的文献

1
Structure Prediction of Alternate Frame Folding Systems with AlphaFold3.使用AlphaFold3对交替框架折叠系统进行结构预测。
J Chem Inf Model. 2025 Aug 11;65(15):8229-8237. doi: 10.1021/acs.jcim.5c00906. Epub 2025 Jul 27.
2
Fold-switching proteins.折叠转换蛋白
ArXiv. 2025 Jul 14:arXiv:2507.10839v1.
8
Protein structure prediction via deep learning: an in-depth review.基于深度学习的蛋白质结构预测:深入综述
Front Pharmacol. 2025 Apr 3;16:1498662. doi: 10.3389/fphar.2025.1498662. eCollection 2025.

本文引用的文献

1
Simulating 500 million years of evolution with a language model.用语言模型模拟5亿年的进化历程。
Science. 2025 Feb 21;387(6736):850-858. doi: 10.1126/science.ads0018. Epub 2025 Jan 16.
3
Structure prediction of alternative protein conformations.蛋白质变构构象预测。
Nat Commun. 2024 Aug 26;15(1):7328. doi: 10.1038/s41467-024-51507-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验