MOViDA:基于生物学信息的神经网络模型的多组学生物药物活性预测

MOViDA: multiomics visible drug activity prediction with a biologically informed neural network model.

机构信息

Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33131, United States.

BIOGEM Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy.

出版信息

Bioinformatics. 2023 Jul 1;39(7). doi: 10.1093/bioinformatics/btad432.

Abstract

MOTIVATION

The process of drug development is inherently complex, marked by extended intervals from the inception of a pharmaceutical agent to its eventual launch in the market. Additionally, each phase in this process is associated with a significant failure rate, amplifying the inherent challenges of this task. Computational virtual screening powered by machine learning algorithms has emerged as a promising approach for predicting therapeutic efficacy. However, the complex relationships between the features learned by these algorithms can be challenging to decipher.

RESULTS

We have engineered an artificial neural network model designed specifically for predicting drug sensitivity. This model utilizes a biologically informed visible neural network, thereby enhancing its interpretability. The trained model allows for an in-depth exploration of the biological pathways integral to prediction and the chemical attributes of drugs that impact sensitivity. Our model harnesses multiomics data derived from a different tumor tissue sources, as well as molecular descriptors that encapsulate the properties of drugs. We extended the model to predict drug synergy, resulting in favorable outcomes while retaining interpretability. Given the imbalanced nature of publicly available drug screening datasets, our model demonstrated superior performance to state-of-the-art visible machine learning algorithms.

AVAILABILITY AND IMPLEMENTATION

MOViDA is implemented in Python using PyTorch library and freely available for download at https://github.com/Luigi-Ferraro/MOViDA. Training data, RIS score and drug features are archived on Zenodo https://doi.org/10.5281/zenodo.8180380.

摘要

动机

药物开发的过程本质上很复杂,从药物的出现到最终推向市场,其间间隔时间很长。此外,这个过程的每个阶段都伴随着很高的失败率,这增加了这项任务的固有挑战。基于机器学习算法的计算虚拟筛选已成为预测治疗效果的一种很有前途的方法。然而,这些算法所学习到的特征之间的复杂关系可能难以解释。

结果

我们设计了一种专门用于预测药物敏感性的人工神经网络模型。该模型使用了一种基于生物学的可视神经网络,从而增强了其可解释性。训练好的模型允许深入探索预测所必需的生物学途径,以及影响敏感性的药物的化学属性。我们的模型利用了来自不同肿瘤组织来源的多组学数据以及包含药物特性的分子描述符。我们将模型扩展到预测药物协同作用,在保持可解释性的同时获得了良好的结果。鉴于公开可用的药物筛选数据集的不平衡性质,我们的模型在性能上优于最先进的可视机器学习算法。

可用性和实现

MOViDA 是用 Python 语言基于 PyTorch 库编写的,可在 https://github.com/Luigi-Ferraro/MOViDA 上免费下载。训练数据、RIS 评分和药物特征都归档在 Zenodo 上 https://doi.org/10.5281/zenodo.8180380。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4303/10375315/3ccb64a5df5f/btad432f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索