Suppr超能文献

机器学习方法在单药药物反应预测中的应用概述。

An overview of machine learning methods for monotherapy drug response prediction.

机构信息

Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France.

Sorbonne Université, École Doctorale Complexite du Vivant, Paris, France.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab408.

Abstract

For an increasing number of preclinical samples, both detailed molecular profiles and their responses to various drugs are becoming available. Efforts to understand, and predict, drug responses in a data-driven manner have led to a proliferation of machine learning (ML) methods, with the longer term ambition of predicting clinical drug responses. Here, we provide a uniquely wide and deep systematic review of the rapidly evolving literature on monotherapy drug response prediction, with a systematic characterization and classification that comprises more than 70 ML methods in 13 subclasses, their input and output data types, modes of evaluation, and code and software availability. ML experts are provided with a fundamental understanding of the biological problem, and how ML methods are configured for it. Biologists and biomedical researchers are introduced to the basic principles of applicable ML methods, and their application to the problem of drug response prediction. We also provide systematic overviews of commonly used data sources used for training and evaluation methods.

摘要

越来越多的临床前样本,其详细的分子谱及其对各种药物的反应都变得可用。以数据驱动的方式理解和预测药物反应的努力导致了机器学习 (ML) 方法的大量涌现,其长期目标是预测临床药物反应。在这里,我们对单药治疗药物反应预测的快速发展的文献进行了独特的广泛而深入的系统回顾,对 70 多种 ML 方法进行了系统的描述和分类,包括 13 个子类中的方法、它们的输入和输出数据类型、评估模式以及代码和软件可用性。为 ML 专家提供了对生物学问题的基本理解,以及如何为其配置 ML 方法。向生物学家和生物医学研究人员介绍了适用的 ML 方法的基本原理及其在药物反应预测问题中的应用。我们还提供了常用的用于训练和评估方法的数据来源的系统概述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e932/8769705/ca8ca18e01c4/bbab408f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验