文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在单细胞水平上理解胶质母细胞瘤:最新进展与未来挑战。

Understanding glioblastoma at the single-cell level: Recent advances and future challenges.

机构信息

Translational Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Microenvironment and Immunology Research Laboratory, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

出版信息

PLoS Biol. 2024 May 30;22(5):e3002640. doi: 10.1371/journal.pbio.3002640. eCollection 2024 May.


DOI:10.1371/journal.pbio.3002640
PMID:38814900
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11139343/
Abstract

Glioblastoma, the most aggressive and prevalent form of primary brain tumor, is characterized by rapid growth, diffuse infiltration, and resistance to therapies. Intrinsic heterogeneity and cellular plasticity contribute to its rapid progression under therapy; therefore, there is a need to fully understand these tumors at a single-cell level. Over the past decade, single-cell transcriptomics has enabled the molecular characterization of individual cells within glioblastomas, providing previously unattainable insights into the genetic and molecular features that drive tumorigenesis, disease progression, and therapy resistance. However, despite advances in single-cell technologies, challenges such as high costs, complex data analysis and interpretation, and difficulties in translating findings into clinical practice persist. As single-cell technologies are developed further, more insights into the cellular and molecular heterogeneity of glioblastomas are expected, which will help guide the development of personalized and effective therapies, thereby improving prognosis and quality of life for patients.

摘要

胶质母细胞瘤是最具侵袭性和最常见的原发性脑肿瘤,其特征为快速生长、弥漫浸润和对治疗的抵抗。内在异质性和细胞可塑性导致其在治疗下快速进展;因此,需要在单细胞水平上全面了解这些肿瘤。在过去的十年中,单细胞转录组学使人们能够对胶质母细胞瘤中的单个细胞进行分子特征分析,提供了以前无法获得的见解,了解了驱动肿瘤发生、疾病进展和治疗抵抗的遗传和分子特征。然而,尽管单细胞技术取得了进展,但仍存在一些挑战,如高成本、复杂的数据分析和解释,以及将研究结果转化为临床实践的困难。随着单细胞技术的进一步发展,预计将对胶质母细胞瘤的细胞和分子异质性有更多的了解,这将有助于指导个性化和有效的治疗方法的开发,从而改善患者的预后和生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e6/11139343/58d175ce0c0c/pbio.3002640.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e6/11139343/8a62b0b870a7/pbio.3002640.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e6/11139343/f7b793bd005a/pbio.3002640.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e6/11139343/58d175ce0c0c/pbio.3002640.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e6/11139343/8a62b0b870a7/pbio.3002640.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e6/11139343/f7b793bd005a/pbio.3002640.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e6/11139343/58d175ce0c0c/pbio.3002640.g003.jpg

相似文献

[1]
Understanding glioblastoma at the single-cell level: Recent advances and future challenges.

PLoS Biol. 2024-5

[2]
New insights for precision treatment of glioblastoma from analysis of single-cell lncRNA expression.

J Cancer Res Clin Oncol. 2021-7

[3]
"Zooming in" on Glioblastoma: Understanding Tumor Heterogeneity and its Clinical Implications in the Era of Single-Cell Ribonucleic Acid Sequencing.

Neurosurgery. 2021-2-16

[4]
Molecular biology of the deadliest cancer - glioblastoma: what do we know?

Front Immunol. 2025-3-21

[5]
Understanding glioblastoma tumor biology: the potential to improve current diagnosis and treatments.

Semin Oncol. 2011-12

[6]
Therapeutic strategies for inhibiting invasion in glioblastoma.

Expert Rev Neurother. 2009-4

[7]
Single-cell and spatial transcriptomic insights into glioma cellular heterogeneity and metabolic adaptations.

Front Immunol. 2025-4-4

[8]
Molecular heterogeneity in glioblastoma: therapeutic opportunities and challenges.

Semin Oncol. 2011-4

[9]
Spatial omics shed light on the tumour organisation of glioblastoma.

Semin Cell Dev Biol. 2025-3

[10]
Glioblastoma Stem Cells at the Nexus of Tumor Heterogeneity, Immune Evasion, and Therapeutic Resistance.

Cells. 2025-4-9

引用本文的文献

[1]
Epigenetic Regulation of OLIG2 in Glioblastoma: Mechanisms and Therapeutic Targets to Combat Treatment Resistance.

J Mol Neurosci. 2025-8-31

[2]
IDENTIFICATION OF DISEASE-SPECIFIC VULNERABILITY STATES AT THE SINGLE-CELL LEVEL.

bioRxiv. 2025-6-8

[3]
Actin-Like Protein 6A as an Oncogene and Therapeutic Target in Cancer.

Int J Med Sci. 2025-6-12

[4]
Machine learning and multi-omics analysis reveal key regulators of proneural-mesenchymal transition in glioblastoma.

Sci Rep. 2025-6-5

[5]
State-of-the-art photodynamic therapy for malignant gliomas: innovations in photosensitizers and combined therapeutic approaches.

Explor Target Antitumor Ther. 2025-3-28

[6]
Engineered oncolytic virus coated with anti-PD-1 and alendronate for ameliorating intratumoral T cell hypofunction.

Exp Hematol Oncol. 2025-2-15

[7]
Understanding the Immune System and Biospecimen-Based Response in Glioblastoma: A Practical Guide to Utilizing Signal Redundancy for Biomarker and Immune Signature Discovery.

Curr Oncol. 2024-12-28

[8]
Characteristics of Ultrasound-Driven Barium Titanate Nanoparticles and the Mechanism of Action on Solid Tumors.

Int J Nanomedicine. 2024-11-28

本文引用的文献

[1]
Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts.

Genome Med. 2024-4-2

[2]
scGPT: toward building a foundation model for single-cell multi-omics using generative AI.

Nat Methods. 2024-8

[3]
High-sensitive spatially resolved T cell receptor sequencing with SPTCR-seq.

Nat Commun. 2023-11-16

[4]
Ultra-fast deep-learned CNS tumour classification during surgery.

Nature. 2023-10

[5]
ScGAN: a generative adversarial network to predict hypothetical superconductors.

J Phys Condens Matter. 2023-10-11

[6]
MOViDA: multiomics visible drug activity prediction with a biologically informed neural network model.

Bioinformatics. 2023-7-1

[7]
Isolation and profiling of viable tumor cells from human ex vivo glioblastoma cultures through single-cell transcriptomics.

STAR Protoc. 2023-9-15

[8]
What do you most hope spatial molecular profiling will help us understand? Part 1.

Cell Syst. 2023-6-21

[9]
Single-cell biology: what does the future hold?

Mol Syst Biol. 2023-7-11

[10]
Ribonucleotide reductase regulatory subunit M2 drives glioblastoma TMZ resistance through modulation of dNTP production.

Sci Adv. 2023-5-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索