Suppr超能文献

在单细胞水平上理解胶质母细胞瘤:最新进展与未来挑战。

Understanding glioblastoma at the single-cell level: Recent advances and future challenges.

机构信息

Translational Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Microenvironment and Immunology Research Laboratory, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

出版信息

PLoS Biol. 2024 May 30;22(5):e3002640. doi: 10.1371/journal.pbio.3002640. eCollection 2024 May.

Abstract

Glioblastoma, the most aggressive and prevalent form of primary brain tumor, is characterized by rapid growth, diffuse infiltration, and resistance to therapies. Intrinsic heterogeneity and cellular plasticity contribute to its rapid progression under therapy; therefore, there is a need to fully understand these tumors at a single-cell level. Over the past decade, single-cell transcriptomics has enabled the molecular characterization of individual cells within glioblastomas, providing previously unattainable insights into the genetic and molecular features that drive tumorigenesis, disease progression, and therapy resistance. However, despite advances in single-cell technologies, challenges such as high costs, complex data analysis and interpretation, and difficulties in translating findings into clinical practice persist. As single-cell technologies are developed further, more insights into the cellular and molecular heterogeneity of glioblastomas are expected, which will help guide the development of personalized and effective therapies, thereby improving prognosis and quality of life for patients.

摘要

胶质母细胞瘤是最具侵袭性和最常见的原发性脑肿瘤,其特征为快速生长、弥漫浸润和对治疗的抵抗。内在异质性和细胞可塑性导致其在治疗下快速进展;因此,需要在单细胞水平上全面了解这些肿瘤。在过去的十年中,单细胞转录组学使人们能够对胶质母细胞瘤中的单个细胞进行分子特征分析,提供了以前无法获得的见解,了解了驱动肿瘤发生、疾病进展和治疗抵抗的遗传和分子特征。然而,尽管单细胞技术取得了进展,但仍存在一些挑战,如高成本、复杂的数据分析和解释,以及将研究结果转化为临床实践的困难。随着单细胞技术的进一步发展,预计将对胶质母细胞瘤的细胞和分子异质性有更多的了解,这将有助于指导个性化和有效的治疗方法的开发,从而改善患者的预后和生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5e6/11139343/8a62b0b870a7/pbio.3002640.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验