Suppr超能文献

基于特征解缠自动编码器的心电图信号生成

ECG signal generation using feature disentanglement auto-encoder.

作者信息

Xiao Hanbin, Xia Yong

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China.

出版信息

Physiol Meas. 2025 Jan 30;13(1). doi: 10.1088/1361-6579/adab4f.

Abstract

The demand for electrocardiogram (ECG) datasets, particularly those containing rare classes, poses a significant challenge as deep learning becomes increasingly prevalent in ECG signal research. While generative adversarial networks (GANs) and variational autoencoders (VAEs) are widely adopted, they encounter difficulties in effectively generating samples for classes with limited instances.To address this issue, we propose a noveleatureisentanglement Auto-Encoder (FDAE) designed to dissect various generative factors under a contrastive learning framework within ECG data to facilitate the generation of new ECG samples. The FDAE enhances and extends the AE structure with novel methodologies, which involve: (1) partitioning the latent space into three distinct representations to capture various generative factors; (2) utilizing a contrastive loss function to improve feature disentanglement capabilities; and (3) incorporating additional classifiers to enhance representation learning, alongside a discriminator aimed at boosting the realism of synthesized signals. Furthermore, our FDAE generates new signals by swapping latent codes of existing signals and combining freely or substituting patient-independent representations with those randomly generated by a VAE.To validate our approach, we conduct heartbeat classification experiments on the publicly available MIT-BIH arrhythmia database, using FAKE-train/FAKE-test partitions and data augmentation. The results highlight the FDAE's ability to improve ECG classifier performance and excel in synthesizing ECG signals. Furthermore, we apply the model to the Icentia11K dataset and conducted classification enhancement experiments. The results further highlight the model's strong generalization ability in ECG synthesis.This work has the potential to improve the robustness and generalization of deep learning models for ECG analysis, particularly in medical applications where rare cardiac events are often underrepresented in available datasets.

摘要

随着深度学习在心电图(ECG)信号研究中越来越普遍,对ECG数据集的需求,尤其是那些包含罕见类别的数据集,构成了重大挑战。虽然生成对抗网络(GAN)和变分自编码器(VAE)被广泛采用,但它们在为实例有限的类别有效生成样本时遇到困难。为了解决这个问题,我们提出了一种新颖的特征解缠自动编码器(FDAE),旨在在ECG数据的对比学习框架下剖析各种生成因素,以促进新ECG样本的生成。FDAE通过新颖的方法增强和扩展了自动编码器结构,这些方法包括:(1)将潜在空间划分为三种不同的表示,以捕获各种生成因素;(2)利用对比损失函数提高特征解缠能力;(3)加入额外的分类器以增强表示学习,同时加入一个鉴别器以提高合成信号的逼真度。此外,我们的FDAE通过交换现有信号的潜在代码并自由组合或用VAE随机生成的与患者无关的表示替换来生成新信号。为了验证我们的方法,我们在公开可用的MIT - BIH心律失常数据库上进行心跳分类实验,使用FAKE - train/FAKE - test分区和数据增强。结果突出了FDAE在提高ECG分类器性能和出色合成ECG信号方面的能力。此外,我们将该模型应用于Icentia11K数据集并进行分类增强实验。结果进一步突出了该模型在ECG合成方面的强大泛化能力。这项工作有可能提高深度学习模型在ECG分析中的鲁棒性和泛化能力,特别是在可用数据集中罕见心脏事件往往代表性不足的医学应用中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验