Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA.
Climate School, Columbia University, New York, NY, 10027, USA.
Sci Data. 2023 Jul 11;10(1):440. doi: 10.1038/s41597-023-02349-y.
We provide a global, long-term carbon flux dataset of gross primary production and ecosystem respiration generated using meta-learning, called MetaFlux. The idea behind meta-learning stems from the need to learn efficiently given sparse data by learning how to learn broad features across tasks to better infer other poorly sampled ones. Using meta-trained ensemble of deep models, we generate global carbon products on daily and monthly timescales at a 0.25-degree spatial resolution from 2001 to 2021, through a combination of reanalysis and remote-sensing products. Site-level validation finds that MetaFlux ensembles have lower validation error by 5-7% compared to their non-meta-trained counterparts. In addition, they are more robust to extreme observations, with 4-24% lower errors. We also checked for seasonality, interannual variability, and correlation to solar-induced fluorescence of the upscaled product and found that MetaFlux outperformed other machine-learning based carbon product, especially in the tropics and semi-arids by 10-40%. Overall, MetaFlux can be used to study a wide range of biogeochemical processes.
我们提供了一个使用元学习生成的全球长期碳通量数据集,称为 MetaFlux。元学习的思想源于在数据稀疏的情况下需要高效学习,通过学习如何跨任务学习广泛的特征来更好地推断其他采样不足的特征。我们使用元训练的深度模型集合,通过综合再分析和遥感产品,在 2001 年至 2021 年期间以每日和每月的时间尺度生成全球碳产品,空间分辨率为 0.25 度。通过与站点水平的验证,发现 MetaFlux 集合的验证误差比非元训练集合低 5-7%。此外,它们对极端观测更稳健,误差低 4-24%。我们还检查了上采样产品的季节性、年际变异性和与太阳诱导荧光的相关性,发现 MetaFlux 优于其他基于机器学习的碳产品,特别是在热带和半干旱地区,差异高达 10-40%。总体而言,MetaFlux 可用于研究广泛的生物地球化学过程。