Suppr超能文献

探索非小细胞肺癌患者肺部微生物组中的共现模式和微生物多样性。

Exploring Co-occurrence patterns and microbial diversity in the lung microbiome of patients with non-small cell lung cancer.

机构信息

Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.

出版信息

BMC Microbiol. 2023 Jul 11;23(1):182. doi: 10.1186/s12866-023-02931-9.

Abstract

BACKGROUND

It has been demonstrated in the literature that a dysbiotic microbiome could have a negative impact on the host immune system and promote disease onset or exacerbation. Co-occurrence networks have been widely adopted to identify biomarkers and keystone taxa in the pathogenesis of microbiome-related diseases. Despite the promising results that network-driven approaches have led to in various human diseases, there is a dearth of research pertaining to key taxa that contribute to the pathogenesis of lung cancer. Therefore, our primary goal in this study is to explore co-existing relationships among members of the lung microbial community and any potential gained or lost interactions in lung cancer.

RESULTS

Using integrative and network-based approaches, we integrated four studies assessing the microbiome of lung biopsies of cancer patients. Differential abundance analyses showed that several bacterial taxa are different between tumor and tumor-adjacent normal tissues (FDR adjusted p-value < 0.05). Four, fifteen, and twelve significantly different associations were found at phylum, family, and genus levels. Diversity analyses suggested reduced alpha diversity in the tumor microbiome. However, beta diversity analysis did not show any discernible pattern between groups. In addition, four distinct modules of bacterial families were detected by the DBSCAN clustering method. Finally, in the co-occurrence network context, Actinobacteria, Firmicutes, Bacteroidetes, and Chloroflexi at the phylum level and Bifidobacterium, Massilia, Sphingobacterium, and Ochrobactrum at the genus level showed the highest degree of rewiring.

CONCLUSIONS

Despite the absence of statistically significant differences in the relative abundance of certain taxa between groups, it is imperative not to overlook them for further exploration. This is because they may hold pivotal central roles in the broader network of bacterial taxa (e.g., Bifidobacterium and Massilia). These findings emphasize the importance of a network analysis approach for studying the lung microbiome since it could facilitate identifying key microbial taxa in lung cancer pathogenesis. Relying exclusively on differentially abundant taxa may not be enough to fully grasp the complex interplay between lung cancer and the microbiome. Therefore, a network-based approach can offer deeper insights and a more comprehensive understanding of the underlying mechanisms.

摘要

背景

文献表明,肠道微生物失调可能对宿主免疫系统产生负面影响,并促进疾病的发生或恶化。共生网络已被广泛应用于识别微生物组相关疾病发病机制中的生物标志物和关键分类群。尽管网络驱动方法在各种人类疾病中取得了有希望的结果,但关于导致肺癌发病机制的关键分类群的研究却很少。因此,我们在这项研究中的主要目标是探索肺部微生物群落成员之间的共存关系,以及在肺癌中任何潜在获得或失去的相互作用。

结果

我们使用整合和基于网络的方法,整合了四项评估癌症患者肺活检微生物组的研究。差异丰度分析表明,肿瘤和肿瘤相邻正常组织之间的几个细菌分类群存在差异(FDR 调整的 p 值<0.05)。在门、科和属水平上分别发现了四个、十五个和十二个显著不同的关联。多样性分析表明,肿瘤微生物组的α多样性降低。然而,β多样性分析没有显示组间的任何可识别模式。此外,通过 DBSCAN 聚类方法检测到四个不同的细菌科模块。最后,在共生网络背景下,厚壁菌门、拟杆菌门、变形菌门和绿弯菌门在门水平,双歧杆菌属、马赛菌属、鞘氨醇单胞菌属和食酸菌属在属水平显示出最高的重布线程度。

结论

尽管两组间某些分类群的相对丰度没有统计学上的显著差异,但也不能忽视它们,需要进一步探索。这是因为它们可能在更广泛的细菌分类群网络中发挥关键的核心作用(例如双歧杆菌属和马赛菌属)。这些发现强调了网络分析方法在研究肺部微生物组中的重要性,因为它可以帮助识别肺癌发病机制中的关键微生物分类群。仅依赖差异丰度分类群可能不足以全面了解肺癌与微生物组之间的复杂相互作用。因此,网络方法可以提供更深入的见解和更全面的理解潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b03/10334658/837089c8f6d9/12866_2023_2931_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验