Sri-Iesaranusorn Panyawut, Sadahiro Ryoichi, Murakami Syo, Wada Saho, Shimizu Ken, Yoshida Teruhiko, Aoki Kazunori, Uezono Yasuhito, Matsuoka Hiromichi, Ikeda Kazushi, Yoshimoto Junichiro
Division of Information Science, Nara Institute of Science and Technology, Nara, Japan.
Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan.
Front Psychiatry. 2023 Jun 27;14:1205605. doi: 10.3389/fpsyt.2023.1205605. eCollection 2023.
Phenotyping analysis that includes time course is useful for understanding the mechanisms and clinical management of postoperative delirium. However, postoperative delirium has not been fully phenotyped. Hypothesis-free categorization of heterogeneous symptoms may be useful for understanding the mechanisms underlying delirium, although evidence is currently lacking. Therefore, we aimed to explore the phenotypes of postoperative delirium following invasive cancer surgery using a data-driven approach with minimal prior knowledge.
We recruited patients who underwent elective invasive cancer resection. After surgery, participants completed 5 consecutive days of delirium assessments using the Delirium Rating Scale-Revised-98 (DRS-R-98) severity scale. We categorized 65 (13 questionnaire items/day × 5 days) dimensional DRS-R-98 scores using unsupervised machine learning (K-means clustering) to derive a small set of grouped features representing distinct symptoms across all participants. We then reapplied K-means clustering to this set of grouped features to delineate multiple clusters of delirium symptoms.
Participants were 286 patients, of whom 91 developed delirium defined according to Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria. Following the first K-means clustering, we derived four grouped symptom features: (1) mixed motor, (2) cognitive and higher-order thinking domain with perceptual disturbance and thought content abnormalities, (3) acute and temporal response, and (4) sleep-wake cycle disturbance. Subsequent K-means clustering permitted classification of participants into seven subgroups: (i) cognitive and higher-order thinking domain dominant delirium, (ii) prolonged delirium, (iii) acute and brief delirium, (iv) subsyndromal delirium-enriched, (v) subsyndromal delirium-enriched with insomnia, (vi) insomnia, and (vii) fit.
We found that patients who have undergone invasive cancer resection can be delineated using unsupervised machine learning into three delirium clusters, two subsyndromal delirium clusters, and an insomnia cluster. Validation of clusters and research into the pathophysiology underlying each cluster will help to elucidate the mechanisms of postoperative delirium after invasive cancer surgery.
包含时间进程的表型分析有助于理解术后谵妄的机制及临床管理。然而,术后谵妄的表型尚未完全明确。对异质性症状进行无假设分类可能有助于理解谵妄的潜在机制,尽管目前缺乏相关证据。因此,我们旨在采用一种基于数据驱动且先验知识最少的方法,探索侵袭性癌症手术后术后谵妄的表型。
我们招募了接受择期侵袭性癌症切除术的患者。术后,参与者使用谵妄评定量表修订版98(DRS-R-98)严重程度量表连续5天完成谵妄评估。我们使用无监督机器学习(K均值聚类)对65个(每天13个问卷项目×5天)维度的DRS-R-98评分进行分类,以得出一小套代表所有参与者不同症状的分组特征。然后,我们将K均值聚类重新应用于这套分组特征,以描绘谵妄症状的多个聚类。
参与者为286例患者,其中91例根据《精神疾病诊断与统计手册》第五版标准被诊断为谵妄。在第一次K均值聚类后,我们得出了四个分组症状特征:(1)混合运动,(2)伴有感知障碍和思维内容异常的认知及高阶思维领域,(3)急性和时间反应,(4)睡眠-觉醒周期紊乱。随后的K均值聚类将参与者分为七个亚组:(i)以认知及高阶思维领域为主的谵妄,(ii)持续性谵妄,(iii)急性短暂性谵妄,(iv)丰富性亚综合征谵妄,(v)伴有失眠的丰富性亚综合征谵妄,(vi)失眠,(vii)健康。
我们发现,接受侵袭性癌症切除术的患者可通过无监督机器学习分为三个谵妄聚类、两个亚综合征谵妄聚类和一个失眠聚类。对聚类进行验证并研究每个聚类背后的病理生理学,将有助于阐明侵袭性癌症手术后术后谵妄的机制。