Sethanan Kanchana, Pitakaso Rapeepan, Srichok Thanatkij, Khonjun Surajet, Weerayuth Nantawatana, Prasitpuriprecha Chutinun, Preeprem Thanawadee, Jantama Sirima Suvarnakuta, Gonwirat Sarayut, Enkvetchakul Prem, Kaewta Chutchai, Nanthasamroeng Natthapong
Department of Industrial Engineer, Faculty of Engineering, Research Unit on System Modelling for Industry, Khon Kaen University, Khon Kaen, Thailand.
Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand.
Front Med (Lausanne). 2023 Jun 26;10:1122222. doi: 10.3389/fmed.2023.1122222. eCollection 2023.
This study aims to develop a web application, TB-DRD-CXR, for the categorization of tuberculosis (TB) patients into subgroups based on their level of drug resistance. The application utilizes an ensemble deep learning model that classifies TB strains into five subtypes: drug sensitive tuberculosis (DS-TB), drug resistant TB (DR-TB), multidrug-resistant TB (MDR-TB), pre-extensively drug-resistant TB (pre-XDR-TB), and extensively drug-resistant TB (XDR-TB).
The ensemble deep learning model employed in the TB-DRD-CXR web application incorporates novel fusion techniques, image segmentation, data augmentation, and various learning rate strategies. The performance of the proposed model is compared with state-of-the-art techniques and standard homogeneous CNN architectures documented in the literature.
Computational results indicate that the suggested method outperforms existing methods reported in the literature, providing a 4.0%-33.9% increase in accuracy. Moreover, the proposed model demonstrates superior performance compared to standard CNN models, including DenseNet201, NASNetMobile, EfficientNetB7, EfficientNetV2B3, EfficientNetV2M, and ConvNeXtSmall, with accuracy improvements of 28.8%, 93.4%, 2.99%, 48.0%, 4.4%, and 7.6% respectively.
The TB-DRD-CXR web application was developed and tested with 33 medical staff. The computational results showed a high accuracy rate of 96.7%, time-based efficiency (ET) of 4.16 goals/minutes, and an overall relative efficiency (ORE) of 100%. The system usability scale (SUS) score of the proposed application is 96.7%, indicating user satisfaction and a likelihood of recommending the TB-DRD-CXR application to others based on previous literature.
本研究旨在开发一个网络应用程序TB-DRD-CXR,用于根据耐药水平将结核病患者分类为不同亚组。该应用程序使用了一个集成深度学习模型,将结核菌株分为五种亚型:药物敏感结核病(DS-TB)、耐药结核病(DR-TB)、耐多药结核病(MDR-TB)、广泛耐药结核病(pre-XDR-TB)和广泛耐药结核病(XDR-TB)。
TB-DRD-CXR网络应用程序中使用的集成深度学习模型采用了新颖的融合技术、图像分割、数据增强和各种学习率策略。将所提出模型的性能与文献中记录的现有技术和标准同构卷积神经网络(CNN)架构进行比较。
计算结果表明,所提出的方法优于文献中报道的现有方法,准确率提高了4.0%-33.9%。此外,与标准CNN模型(包括DenseNet201、NASNetMobile、EfficientNetB7、EfficientNetV2B3、EfficientNetV2M和ConvNeXtSmall)相比,所提出的模型表现出更好的性能,准确率分别提高了28.8%、93.4%、2.99%、48.0%、4.4%和7.6%。
开发了TB-DRD-CXR网络应用程序,并对33名医务人员进行了测试。计算结果显示准确率高达96.7%,基于时间的效率(ET)为4.16目标/分钟,总体相对效率(ORE)为100%。所提出应用程序的系统可用性量表(SUS)得分为96.7%,表明用户满意度较高,并且根据以往文献,有向他人推荐TB-DRD-CXR应用程序的可能性。