Suppr超能文献

一种基于深度学习的高效框架,用于使用胸部X光图像检测肺结核。

An efficient deep learning-based framework for tuberculosis detection using chest X-ray images.

作者信息

Iqbal Ahmed, Usman Muhammad, Ahmed Zohair

机构信息

Predictive Analytics Lab, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan.

Predictive Analytics Lab, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad, Pakistan.

出版信息

Tuberculosis (Edinb). 2022 Sep;136:102234. doi: 10.1016/j.tube.2022.102234. Epub 2022 Jul 19.

Abstract

Early diagnosis of tuberculosis (TB) is an essential and challenging task to prevent disease, decrease mortality risk, and stop transmission to other people. The chest X-ray (CXR) is the top choice for lung disease screening in clinics because it is cost-effective and easily accessible in most countries. However, manual screening of CXR images is a heavy burden for radiologists, resulting in a high rate of inter-observer variances. Hence, proposing a cost-effective and accurate computer aided diagnosis (CAD) system for TB diagnosis is challenging for researchers. In this research, we proposed an efficient and straightforward deep learning network called TBXNet, which can accurately classify a large number of TB CXR images. The network is based on five dual convolutions blocks with varying filter sizes of 32, 64, 128, 256 and 512, respectively. The dual convolution blocks are fused with a pre-trained layer in the fusion layer of the network. In addition, the pre-trained layer is utilized for transferring pre-trained knowledge into the fusion layer. The proposed TBXNet has achieved an accuracy of 98.98%, and 99.17% on Dataset A and Dataset B, respectively. Furthermore, the generalizability of the proposed work is validated against Dataset C, which is based on normal, tuberculous, pneumonia, and COVID-19 CXR images. The TBXNet has obtained the highest results in Precision (95.67%), Recall (95.10%), F1-score (95.38%), and Accuracy (95.10%), which is comparatively better than all other state-of-the-art methods.

摘要

结核病(TB)的早期诊断对于预防疾病、降低死亡风险以及阻止疾病传播给他人而言,是一项至关重要且具有挑战性的任务。胸部X光(CXR)是临床肺部疾病筛查的首选方法,因为它具有成本效益,并且在大多数国家都易于获取。然而,对CXR图像进行人工筛查对放射科医生来说是一项沉重的负担,导致观察者间差异率很高。因此,为结核病诊断提出一种经济高效且准确的计算机辅助诊断(CAD)系统对研究人员来说具有挑战性。在本研究中,我们提出了一种高效且简单的深度学习网络,称为TBXNet,它可以准确地对大量结核病CXR图像进行分类。该网络基于五个双卷积块,其滤波器大小分别为32、64、128、256和512。双卷积块在网络的融合层中与一个预训练层融合。此外,预训练层用于将预训练知识转移到融合层。所提出的TBXNet在数据集A和数据集B上分别达到了98.98%和99.17%的准确率。此外,针对基于正常、结核、肺炎和COVID-19 CXR图像的数据集C验证了所提出工作的通用性。TBXNet在精确率(95.67%)、召回率(95.10%)、F1分数(95.38%)和准确率(95.10%)方面取得了最高结果,比所有其他现有方法都要好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验