Faculty of Health Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia.
J Mol Model. 2023 Jul 13;29(8):245. doi: 10.1007/s00894-023-05648-8.
l-Tyrosine is a naturally occurring agent that acts as a precursor in biosynthesis of monoaminergic neurotransmitters in brain such as dopamine, adrenaline, noradrenaline, and hormones like thyroxine and triiodothyronine. While l-tyrosine in vacuo adopts the canonical aminoacid form with -NH and -COOH functional groups, from neutral solutions, is crystallizes in the zwitterionic form possessing -NH and -COO groups. As l-tyrosine is non-innocent agent with respect to redox processes, redox ability in water expressed by the absolute oxidation and reduction potentials is investigated. The cluster analysis applied to a set of nine related neurotransmitters and trace amines confirms that l-tyrosine is mostly similar to aminoacid forms of phenylalanine, octopamine, and noradrenaline.
The energetic data at the Hartree-Fock MO-LCAO-SCF method has been conducted using def2-TZVP basis set, and improved by the many-body perturbation theory using the MP2 correction to the correlation energy. For the aminoacid form and the zwitterionic form of l-tyrosine, a set of molecular descriptors has been evaluated (ionization energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index, dipole moment, quadrupole moment, and dipole polarizability). The solvent effect (CPCM) is very expressive to the zwitterionic form and alters the sign of the electron affinity from positive to negative values. In parallel, density-functional theory with B3LYP variant in the same basis set has been employed for full geometry optimization of the neutral and ionized forms of l-tyrosine allowing assessing the adiabatic (a) ionization/affinity processes. The complete vibrational analysis enables evaluating thermodynamic functions such as the inner energy, enthalpy, entropy, Gibbs energy, and consequently the absolute oxidation and reduction potentials. Of applied methods, the most reliable are B3LYP(a) results that account to the correlation energy and the electron and nuclear relaxation during the ionization/affinity processes.
L-酪氨酸是一种天然存在的物质,作为大脑中单胺能神经递质(如多巴胺、肾上腺素、去甲肾上腺素)和激素(如甲状腺素和三碘甲状腺原氨酸)生物合成的前体。虽然 L-酪氨酸在真空中采用具有-NH 和-COOH 官能团的典型氨基酸形式,但从中性溶液中结晶时呈两性离子形式,具有-NH 和-COO 基团。由于 L-酪氨酸是与氧化还原过程有关的非无辜物质,因此研究了其在水中的氧化还原能力,用绝对氧化还原电位来表示。应用于一组九种相关神经递质和痕量胺的聚类分析证实,L-酪氨酸与苯丙氨酸、章鱼胺和去甲肾上腺素的氨基酸形式最为相似。
采用 Hartree-Fock MO-LCAO-SCF 方法,用 def2-TZVP 基组进行了能量数据分析,并使用 MP2 对相关能量进行修正,用多体微扰理论对其进行了改进。对于 L-酪氨酸的氨基酸形式和两性离子形式,评估了一组分子描述符(电离能、电子亲合能、分子电负性、化学硬度、亲电性指数、偶极矩、四极矩和偶极极化率)。溶剂效应(CPCM)对两性离子形式非常有表现力,使电子亲合能的符号从正变为负。同时,在相同基组中采用 B3LYP 变体的密度泛函理论对 L-酪氨酸的中性和离子化形式进行了全几何优化,允许评估绝热(a)电离/亲和过程。完整的振动分析能够评估内能、焓、熵、吉布斯自由能等热力学函数,从而评估绝对氧化还原电位。在所应用的方法中,最可靠的是 B3LYP(a)结果,它考虑了相关能量以及在电离/亲和过程中电子和核弛豫。