Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy.
NANOTEC-CNR, Soft and Living Matter Laboratory, Institute of Nanotechnology, Piazzale A. Moro 5, 00185, Roma, Italy.
Nat Commun. 2023 Jul 13;14(1):4191. doi: 10.1038/s41467-023-39974-5.
Active fluids, like all other fluids, exert mechanical pressure on confining walls. Unlike equilibrium, this pressure is generally not a function of the fluid state in the bulk and displays some peculiar properties. For example, when activity is not uniform, fluid regions with different activity may exert different pressures on the container walls but they can coexist side by side in mechanical equilibrium. Here we show that by spatially modulating bacterial motility with light, we can generate active pressure gradients capable of transporting passive probe particles in controlled directions. Although bacteria swim faster in the brighter side, we find that bacteria in the dark side apply a stronger pressure resulting in a net drift motion that points away from the low activity region. Using a combination of experiments and numerical simulations, we show that this drift originates mainly from an interaction pressure term that builds up due to the compression exerted by a layer of polarized cells surrounding the slow region. In addition to providing new insights into the generalization of pressure for interacting systems with non-uniform activity, our results demonstrate the possibility of exploiting active pressure for the controlled transport of microscopic objects.
活性流体与所有其他流体一样,对约束壁施加机械压力。与平衡状态不同,这种压力通常不是流体整体状态的函数,并表现出一些特殊性质。例如,当活性不均匀时,具有不同活性的流体区域可能对容器壁施加不同的压力,但它们可以在机械平衡中共存。在这里,我们展示了通过用光空间调制细菌的运动,我们可以产生活性压力梯度,能够以受控的方向输送被动探针颗粒。尽管细菌在较亮的一侧游得更快,但我们发现黑暗一侧的细菌施加的压力更大,导致净漂移运动指向低活性区域。通过实验和数值模拟的组合,我们表明这种漂移主要源自于由于围绕慢区的极化细胞层施加的压缩而建立的相互作用压力项。除了为具有不均匀活性的相互作用系统的压力推广提供新的见解外,我们的结果还表明了利用主动压力进行微观物体受控运输的可能性。