Li Qiang, Chen Mingyu, Geng Jingjing, Adamu Mohammed Jajere, Guan Xin
School of Microelectronics, Tianjin University, Tianjin 300072, China.
Diagnostics (Basel). 2023 Jun 25;13(13):2165. doi: 10.3390/diagnostics13132165.
The development of automatic chest X-ray (CXR) disease classification algorithms is significant for diagnosing thoracic diseases. Owing to the characteristics of lesions in CXR images, including high similarity in appearance of the disease, varied sizes, and different occurrence locations, most existing convolutional neural network-based methods have insufficient feature extraction for thoracic lesions and struggle to adapt to changes in lesion size and location. To address these issues, this study proposes a high-resolution classification network with dynamic convolution and coordinate attention (HRCC-Net). In the method, this study suggests a parallel multi-resolution network in which a high-resolution branch acquires essential detailed features of the lesion and multi-resolution feature swapping and fusion to obtain multiple receptive fields to extract complicated disease features adequately. Furthermore, this study proposes dynamic convolution to enhance the network's ability to represent multi-scale information to accommodate lesions of diverse scales. In addition, this study introduces a coordinate attention mechanism, which enables automatic focus on pathologically relevant regions and capturing the variations in lesion location. The proposed method is evaluated on ChestX-ray14 and CheXpert datasets. The average AUC (area under ROC curve) values reach 0.845 and 0.913, respectively, indicating this method's advantages compared with the currently available methods. Meanwhile, with its specificity and sensitivity to measure the performance of medical diagnostic systems, the network can improve diagnostic efficiency while reducing the rate of misdiagnosis. The proposed algorithm has great potential for thoracic disease diagnosis and treatment.
自动胸部X光(CXR)疾病分类算法的发展对胸部疾病的诊断具有重要意义。由于CXR图像中病变的特征,包括疾病外观的高度相似性、大小各异以及发生位置不同,大多数现有的基于卷积神经网络的方法对胸部病变的特征提取不足,难以适应病变大小和位置的变化。为了解决这些问题,本研究提出了一种具有动态卷积和坐标注意力的高分辨率分类网络(HRCC-Net)。在该方法中,本研究提出了一种并行多分辨率网络,其中高分辨率分支获取病变的基本详细特征,并进行多分辨率特征交换和融合以获得多个感受野,从而充分提取复杂的疾病特征。此外,本研究提出动态卷积以增强网络表示多尺度信息的能力,以适应不同尺度的病变。此外,本研究引入了坐标注意力机制,该机制能够自动聚焦于病理相关区域并捕捉病变位置的变化。所提出的方法在ChestX-ray14和CheXpert数据集上进行了评估。平均AUC(ROC曲线下面积)值分别达到0.845和0.913,表明该方法与现有方法相比具有优势。同时,通过其特异性和敏感性来衡量医学诊断系统的性能,该网络可以提高诊断效率,同时降低误诊率。所提出的算法在胸部疾病的诊断和治疗方面具有巨大潜力。