Suppr超能文献

从术前CT自动提取机器学习特征以早期预测肝癌微血管侵犯:移行带(ZOT)的作用

Automatically Extracted Machine Learning Features from Preoperative CT to Early Predict Microvascular Invasion in HCC: The Role of the Zone of Transition (ZOT).

作者信息

Renzulli Matteo, Mottola Margherita, Coppola Francesca, Cocozza Maria Adriana, Malavasi Silvia, Cattabriga Arrigo, Vara Giulio, Ravaioli Matteo, Cescon Matteo, Vasuri Francesco, Golfieri Rita, Bevilacqua Alessandro

机构信息

Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy.

Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40126 Bologna, Italy.

出版信息

Cancers (Basel). 2022 Apr 3;14(7):1816. doi: 10.3390/cancers14071816.

Abstract

BACKGROUND

Microvascular invasion (MVI) is a consolidated predictor of hepatocellular carcinoma (HCC) recurrence after treatments. No reliable radiological imaging findings are available for preoperatively diagnosing MVI, despite some progresses of radiomic analysis. Furthermore, current MVI radiomic studies have not been designed for small HCC nodules, for which a plethora of treatments exists. This study aimed to identify radiomic MVI predictors in nodules ≤3.0 cm by analysing the zone of transition (ZOT), crossing tumour and peritumour, automatically detected to face the uncertainties of radiologist's tumour segmentation.

METHODS

The study considered 117 patients imaged by contrast-enhanced computed tomography; 78 patients were finally enrolled in the radiomic analysis. Radiomic features were extracted from the tumour and the ZOT, detected using an adaptive procedure based on local image contrast variations. After data oversampling, a support vector machine classifier was developed and validated. Classifier performance was assessed using receiver operating characteristic (ROC) curve analysis and related metrics.

RESULTS

The original 89 HCC nodules (32 MVI+ and 57 MVI-) became 169 (62 MVI+ and 107 MVI-) after oversampling. Of the four features within the signature, three are ZOT heterogeneity measures regarding both arterial and venous phases. On the test set (19MVI+ and 33MVI-), the classifier predicts MVI+ with area under the curve of 0.86 (95%CI (0.70-0.93), ∼10-5), sensitivity = 79% and specificity = 82%. The classifier showed negative and positive predictive values of 87% and 71%, respectively.

CONCLUSIONS

The classifier showed the highest diagnostic performance in the literature, disclosing the role of ZOT heterogeneity in predicting the MVI+ status.

摘要

背景

微血管侵犯(MVI)是肝细胞癌(HCC)治疗后复发的一个公认预测指标。尽管在放射组学分析方面取得了一些进展,但目前尚无可靠的影像学检查结果可用于术前诊断MVI。此外,目前的MVI放射组学研究并非针对存在多种治疗手段的小HCC结节设计。本研究旨在通过分析自动检测到的跨越肿瘤及瘤周的移行带(ZOT),识别直径≤3.0 cm结节中的MVI放射组学预测指标,以应对放射科医生进行肿瘤分割时的不确定性。

方法

本研究纳入了117例行对比增强CT成像的患者;最终78例患者纳入放射组学分析。基于局部图像对比度变化的自适应程序检测肿瘤及ZOT,并从中提取放射组学特征。数据过采样后,开发并验证了支持向量机分类器。使用受试者工作特征(ROC)曲线分析及相关指标评估分类器性能。

结果

过采样后,最初的89个HCC结节(32个MVI阳性和57个MVI阴性)变为169个(62个MVI阳性和107个MVI阴性)。在特征标记中的4个特征中,3个是关于动脉期和静脉期的ZOT异质性指标。在测试集(19个MVI阳性和33个MVI阴性)中,分类器预测MVI阳性的曲线下面积为0.86(95%CI(0.70 - 0.93),~10 - 5),灵敏度 = 79%,特异度 = 82%。该分类器的阴性预测值和阳性预测值分别为87%和71%。

结论

该分类器在文献中显示出最高的诊断性能,揭示了ZOT异质性在预测MVI阳性状态中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验